6 research outputs found

    Extracellular Vimentin as a Target Against SARS-CoV-2 Host Cell Invasion

    Get PDF
    Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. The primary receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2), yet new studies reveal the importance of additional extracellular co-receptors that mediate binding and host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens’ cellular uptake. Biophysical and cell infection studies are done to determine whether vimentin might bind SARS-CoV-2 and facilitate its uptake. Dynamic light scattering shows that vimentin binds to pseudovirus coated with the SARS-CoV-2 spike protein, and antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. The results are consistent with a model in which extracellular vimentin acts as a co-receptor for SARS-CoV-2 spike protein with a binding affinity less than that of the spike protein with ACE2. Extracellular vimentin may thus serve as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry, and vimentin-targeting agents may yield new therapeutic strategies for preventing and slowing SARS-CoV-2 infection

    Sex-dependent effects of canagliflozin and dapagliflozin on hemostasis in normoglycemic and hyperglycemic mice

    No full text
    Abstract Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are antihyperglycemic drugs that decrease mortality from cardiovascular diseases. However, their effects on hemostasis in the cardioprotective effects have not been evaluated. Therefore, the effects of canagliflozin (CANA, 100 mg/kg, p.o.) and dapagliflozin (DAPA, 10 mg/kg, p.o.) on the parameters of hemostasis were investigated in female and male normoglycemic and streptozotocin (180 mg/kg, i.p.)-induced diabetic mice. CANA and DAPA reduced platelet activity in thrombus in male and female mice both normoglycemic and diabetic. CANA decreased thrombus formation in diabetic male mice, and platelet activation to ADP in diabetic female and male mice. Activation of fibrinolysis was observed in female mice, both normoglycemic and diabetic. DAPA reduced thrombus formation in diabetic male and female mice, and decreased platelet activation to ADP and fibrin formation in diabetic male mice. DAPA increased fibrin formation in normoglycemic female mice and activated fibrinolysis in diabetic female mice. CANA and DAPA exerted sex-specific effects, which were more pronounced in hyperglycemia. The antithrombotic effect of CANA and DAPA was more noticeable in male mice and could be due to platelet inhibition. The effect on coagulation and fibrinolysis was not clear since an increased coagulation and fibrinolysis were observed only in female mice

    Natural Polyphenols May Normalize Hypochlorous Acid-Evoked Hemostatic Abnormalities in Human Blood

    No full text
    During pathogen invasion, activated neutrophils secrete myeloperoxidase (MPO), which generates high local concentrations of hypochlorous acid (HOCl), a strong antimicrobial agent. Prolonged or uncontrolled HOCl production may, however, affect hemostasis, manifesting in inhibition of platelet aggregation and thrombus formation and in elevated fibrin density and attenuated fibrinolysis. In this report, we investigated whether three plant-derived polyphenols with well-known antioxidant properties, i.e., quercetin (Que), epigallocatechin gallate (EGCG), and resveratrol (Resv), at concentrations not affecting platelet responses per se, may normalize particular aspects of hemostasis disturbed by HOCl. Specifically, Que (5–25 ÎŒM) and EGCG (10–25 ÎŒM) abolished HOCl-evoked inhibition of platelet aggregation (assessed by an optical method), while the simultaneous incubation of platelet-rich plasma with Resv (10–25 ÎŒM) enhanced the inhibitory effect of HOCl. A similar effect was observed in the case of thrombus formation under flow conditions, evaluated in whole blood by confocal microscope. When plasma samples were incubated with HOCl, a notably higher density of fibrin (recorded by confocal microscope) was detected, an effect that was efficiently normalized by Que (5–25 ÎŒM), EGCG (10–25 ÎŒM), and Resv (5–25 ÎŒM) and which corresponded with the normalization of the HOCl-evoked prolongation of fibrinolysis, measured in plasma by a turbidimetric method. In conclusion, this report indicates that supplementation with Que and EGCG may be helpful in the normalization of hemostatic abnormalities during inflammatory states associated with elevated HOCl production, while the presence of Resv enhances the inhibitory action of HOCl towards platelets

    Peanut-shaped gold nanoparticles with shells of ceragenin csa-131 display the ability to inhibit ovarian cancer growth in vitro and in a tumor xenograft model

    No full text
    SIMPLE SUMMARY: Despite a spectrum of therapeutics available for the treatment of ovarian tumors, there is a constant need to develop novel treatment options, particularly due to a high incidence of drug resistant tumors and low 5-year survival of patients diagnosed with ovarian carcinomas. In this study, we employed a nanotechnology-based approach to present a novel nanosystem based on ceragenin CSA-131 attached to the surface of a peanut-shaped gold nanoparticle. We demonstrate that such a prepared nanoformulation was highly effective against ovarian cancer cells in in vitro settings and, with limited toxicity, was able to prevent the growth of ovarian tumors in treated animals. Based on obtained data we suggest that ceragenin-containing nanosystems should be considered and further tested as potential therapeutics for ovarian malignancy. ABSTRACT: Gold nanoparticles-assisted delivery of antineoplastics into cancerous cells is presented as an effective approach for overcoming the limitations of systemic chemotherapy. Although ceragenins show great potential as anti-cancer agents, in some tumors, effective inhibition of cancer cells proliferation requires application of ceragenins at doses within their hemolytic range. For the purpose of toxicity/efficiency ratio control, peanut-shaped gold nanoparticles (AuP NPs) were functionalized with a shell of ceragenin CSA-131 and the cytotoxicity of AuP@CSA-131 against ovarian cancer SKOV-3 cells and were then analyzed. In vivo efficiency of intravenously and intratumorally administered CSA-131 and AuP@CSA-131 was examined using a xenograft ovarian cancer model. Serum parameters were estimated using ELISA methods. Comparative analysis revealed that AuP@CSA-131 exerted stronger anti-cancer effects than free ceragenin, which was determined by enhanced ability to induce caspase-dependent apoptosis and autophagy processes via reactive oxygen species (ROS)-mediated pathways. In an animal study, AuP@CSA-131 was characterized by delayed clearance and prolonged blood circulation when compared with free ceragenin, as well as enhanced anti-tumor efficiency, particularly when applied intratumorally. Administration of CSA-131 and AuP@CSA-131 prevented the inflammatory response associated with cancer development. These results present the possibility of employing non-spherical gold nanoparticles as an effective nanoplatform for the delivery of antineoplastics for the treatment of ovarian malignancy

    Thromboelastometric Analysis of Anticancer Cerrena unicolor Subfractions Reveal Their Potential as Fibrin Glue Drug Carrier Enhancers

    No full text
    In this study, the influence of two subfractions (with previously proven anti-cancer properties) isolated from wood rot fungus Cerrena unicolor on the formation of a fibrin clot was investigated in the context of potential use as fibrin glue and sealant enhancers and potential wound healing agents. With the use of ROTEM thromboelastometry, we demonstrated that, in the presence of fibrinogen and thrombin, the S6 fraction accelerated the formation of a fibrin clot, had a positive effect on its elasticity modulus, and enhanced the degree of fibrin cross-linking. The S5 fraction alone showed no influence on the fibrin coagulation process; however, in the presence of fibrin, it exhibited a decrease in anti-proliferative properties against the HT-29 line, while it increased the proliferation of cells in general at a concentration of 100 ”g/mL. Both fractions retained their proapoptotic properties to a lesser degree. In combination with the S6 fraction in the ratio of 1:1 and 1:3, the fractions contributed to increased inhibition of the activity of matrix metalloproteinases (MMPs). This may suggest anti-metastatic activity of the combined fractions. In conclusion, the potential of the fractions isolated from the C. unicolor secretome to be used as a means of improving the wound healing process was presented. The potential for delivering agents with cytostatic properties introduced far from the site of action or exerting a pro-proliferative effect at the wound site with the aid of a fibrin sealant was demonstrated
    corecore