16 research outputs found
Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes
BACKGROUND: Recently fibroblasts of many mammalian species have been reprogrammed to pluripotent state using overexpression of several transcription factors. This technology allows production of induced pluripotent stem (iPS) cells with properties similar to embryonic stem (ES) cells. The completeness of reprogramming process is well studied in such species as mouse and human but there is not enough data on other species. We produced American mink (Neovison vison) ES and iPS cells and compared these cells using transcriptome analysis. RESULTS: We report the generation of 10 mink ES and 22 iPS cell lines. The majority of the analyzed cell lines had normal diploid chromosome number. The only ES cell line with XX chromosome set had both X-chromosomes in active state that is characteristic of pluripotent cells. The pluripotency of ES and iPS cell lines was confirmed by formation of teratomas with cell types representing all three germ layers. Transcriptome analysis of mink embryonic fibroblasts (EF), two ES and two iPS cell lines allowed us to identify 11831 assembled contigs which were annotated. These led to a number of 6891 unique genes. Of these 3201 were differentially expressed between mink EF and ES cells. We analyzed expression levels of these genes in iPS cell lines. This allowed us to show that 80% of genes were correctly reprogrammed in iPS cells, whereas approximately 6% had an intermediate expression pattern, about 7% were not reprogrammed and about 5% had a "novel" expression pattern. We observed expression of pluripotency marker genes such as Oct4, Sox2 and Rex1 in ES and iPS cell lines with notable exception of Nanog. CONCLUSIONS: We had produced and characterized American mink ES and iPS cells. These cells were pluripotent by a number of criteria and iPS cells exhibited effective reprogramming. Interestingly, we had showed lack of Nanog expression and consider it as a species-specific feature
Dimebon Does Not Ameliorate Pathological Changes Caused by Expression of Truncated (1â120) Human Alpha-Synuclein in Dopaminergic Neurons of Transgenic Mice
Background: Recent clinical studies have demonstrated that dimebon, a drug originally designed and used as a non-selective antihistamine, ameliorates symptoms and delays progress of mild to moderate forms of Alzheimerâs and Huntingtonâs diseases. Although the mechanism of dimebon action on pathological processes in degenerating brain is elusive, results of studies carried out in cell cultures and animal models suggested that this drug might affect the process of pathological accumulation and aggregation of various proteins involved in the pathogenesis of proteinopathies. However, the effect of this drug on the pathology caused by overexpression and aggregation of alpha-synuclein, including Parkinsonâs disease (PD), has not been assessed. Objective: To test if dimebon affected alpha-synuclein-induced pathology using a transgenic animal model. Methods: We studied the effects of chronic dimebon treatment on transgenic mice expressing the C-terminally truncated (1â120) form of human alpha-synuclein in dopaminergic neurons, a mouse model that recapitulates several biochemical, histopathological and behavioral characteristics of the early stage of PD. Results: Dimebon did not improve balance and coordination of aging transgenic animals or increase the level of striatal dopamine, nor did it prevent accumulation of alpha-synuclein in cell bodies of dopaminergic neurons. Conclusion: Our observations suggest that in the studied model of alpha-synucleinopathy dimebon has very limited effect on certain pathological alterations typical of PD and related diseases
Genetic modification of mammalian genome at chromosome level
The review is concerned with a progress in genetic modification of a mammalian genome in vitro and in vivo at chromosomal level. Recently three new approaches for the chromosome biotechnology have been developed: Using Cre/loxP-system a researcher is able to produce targeted rearrangements of whole chromosomes or their segments or particular genes within the genome, and therefore to modify the set, position and copy number of the endogenous elements of the genome. Mammalian artificial chromosomes (MACs) provide a possibility to introduce into genome relatively large segments of alien chromosome material, either artificially constructed or derived from the genome of different species. Using ES-somatic cell hybrids allows to transfer whole chromosomes or their fragments between different genomes within and between species. Advantages and limitations of these approaches are discussed
Comparison of methanol to gasoline conversion in one-step, two-step, and cascade mode in the presence of H-ZSM-5 zeolite
In this report, three technological modes for methanol-to-gasoline reaction in the presence of H-ZSM-5 catalyst are compared: (i) direct methanol transformation to hydrocarbons; (ii) two-step (methanol-dimethyl ether-hydrocarbons); and (iii) cascade pathway. Light hydrocarbon gases (methane, ethylene, propylene, and isobutene) and liquid aromatic hydrocarbons (benzene, toluene, xylene, cresol, durol, naphthalene, methylnaphthalene, ethyl naphthalene, isopropyl naphthalene, methyl isopropyl naphthalene, etc.) were found to be the main reaction products. The experimental results showed that the classical two-step methanol to gasoline (MTG) process nowadays remains the most effective for gasoline-range hydrocarbons production, while one-step and cascade schemes require further investigation and the development of reactor systems as well as the operating conditions. The product distribution of MTG synthesis after 120â
h on stream in the case of two-step mode was found to be the following: liquid C6âC8 hydrocarbons â 23%; C1âC5 gaseous products â 65%; heavy C9âC12 hydrocarbons â 10%
Variants of the Coagulation and Inflammation Genes Are Replicably Associated with Myocardial Infarction and Epistatically Interact in Russians.
In spite of progress in cardiovascular genetics, data on genetic background of myocardial infarction are still limited and contradictory. This applies as well to the genes involved in inflammation and coagulation processes, which play a crucial role in the disease etiopathogenesis.In this study we found genetic variants of TGFB1, FGB and CRP genes associated with myocardial infarction in discovery and replication groups of Russian descent from the Moscow region and the Republic of Bashkortostan (325/185 and 220/197 samples, correspondingly). We also found and replicated biallelic combinations of TGFB1 with FGB, TGFB1 with CRP and IFNG with PTGS1 genetic variants associated with myocardial infarction providing a detectable cumulative effect. We proposed an original two-component procedure for the analysis of nonlinear (epistatic) interactions between the genes in biallelic combinations and confirmed the epistasis hypothesis for the set of alleles of IFNG with PTGS. The procedure is applicable to any pair of logical variables, e.g. carriage of two sets of alleles. The composite model that included three single gene variants and the epistatic pair has AUC of 0.66 both in discovery and replication groups.The genetic impact of TGFB1, FGB, CRP, IFNG, and PTGS and/or their biallelic combinations on myocardial infarction was found and replicated in Russians. Evidence of epistatic interactions between IFNG with PTGS genes was obtained both in discovery and replication groups
Sterilizer of Knives in the Meat Industry, Working by Activating Aqueous Solutions with Glow Discharge Plasma
The development of approaches for the non-thermal sterilization of instruments is an urgent task to ensure the safety of meat industry products, where the use of hot water leads to the formation of condensates and a deterioration in the hygienic condition of the premises. In this study, an installation for sterilizing knives was created, which works by activating aqueous salt solutions with a glow discharge. The power consumption of the installation reactor is only 125–150 Wh. The temperature rise of the sterilizing agent used is about 1.1 ± 0.2 °C/min/L. The effectiveness of the installation for plasma-activation of aqueous solutions of chloride and sodium sulfate by glow discharge (PAW) in relation to the inactivation of microorganisms, including Staphylococcus aureus, Salmonella typhimurium, Pseudomonas gessardii and L. monocytogenes, on steel surfaces was evaluated. Samples of stainless steel (parts of knives) were used in two versions (new and artificially aged). Mono- and polyspecies bacterial biofilms were grown on the surface of the samples. The treatment was carried out by immersing samples of steel plates in plasma-activated aqueous solutions. It was found that the treatment of plates in a knife sterilizer for 1 min had an effective effect on the inhibition of all types of studied bacteria
Prophylactic thyroidectomy results among RET germline mutation bearers in families with hereditary forms of medullary thyroid cancer
Genetically caused medullary thyroid cancer (MTC) is associated with unfavorable survival prognosis, so it makes necessary to develop new diagnostic techniques to reveal pre-clinical stage of disease as well as to introduce into clinical practice the effective method of tumor prevention. The article represents first in Russia summary clinical experience of prophylactic thyroidectomy have been executed in the period 1998 â 2015 yeas among ten bearers of RET gene germlinemutation in families with hereditary disease including syndrome MEN2A and familial MTC.
Aim: to evaluate the results of surgical treatment of asymptomatic carriers of germinal mutations in the RET gene.
Materials and methods. In the period from 1998 to 2015, in two centers: N.N. Blokhin Russian Cancer Research Center, Moscow and A. Tsyb Medical Radiological Research Centre â branch of the National Medical Research Radiological Centre, Obninsk was conducted prophylactic surgical treatment in 10 patients â asymptomatic carriers of germinal mutations in RET. Age of patients â from 2 to 23 years old. 9 patients â from families with the syndrome of multiple endocrineneoplasia type 2A (MEN2A), one â with the family of MTC. According to genealogy in 9 families of patients there have been cases of death from MTC or pheochromocytoma (PC). In all cases, surgical treatment was performed in a volume of TE, two patients additionally performed lymph node dissection VI level. The observation period after surgery ranged from 6 months to 16 years.
Results. DNA diagnostics in 8 patients identified a mutation in exon 11, in one case â in exon 10 and one patient had revealed two mutations in exons 13 and 14. The age of patients ranged from 2 to 23 years. Basal calcitonin level was elevated in 7 of 10 patients. Such prophylactic TE in 2 patients was supplemented by selective lymph node dissection. Histological examination of the removal of the thyroid gland (TG) revealed foci of medullary cancer in 6 of 10. At 2 patients revealed a C-cell hyperplasia and at 2 patients were found signs of the well expressed and weakly expressed sclerosis in thyroid tissue. The earliest age to identify MTC was a child 3 years old, mutations in codon 634, from a family where relatives observed for aggressive MTC. In the course of follow-recurrence was detected in one patient, a child of 15 years, a similar mutation carrier.
Conclusion. In view of the risk of MTC developing identifying a mutation in RET gene and preventive TE should be carried out as soon as possible. The high risk of MTC developing in RET-gene positive subjects was confirmed in this study (6 cases of cancer from 10 patients)
Exploring the Potential of Sulfur Moieties in Compounds Inhibiting Steroidogenesis
This study reports on the synthesis and evaluation of novel compounds replacing the nitrogen-containing heterocyclic ring on the chemical backbone structure of cytochrome P450 17α-hydroxylase/12,20-lyase (CYP17A1) inhibitors with a phenyl bearing a sulfur-based substituent. Initial screening revealed compounds with marked inhibition of CYP17A1 activity. The selectivity of compounds was thereafter determined against cytochrome P450 21-hydroxylase, cytochrome P450 3A4, and cytochrome P450 oxidoreductase. Additionally, the compounds showed weak inhibitory activity against aldo-keto reductase 1C3 (AKR1C3). The compoundsâ impact on steroid hormone levels was also assessed, with some notable modulatory effects observed. This work paves the way for developing more potent dual inhibitors specifically targeting CYP17A1 and AKR1C3
The map of possible interactions between components of MI-associated biallelic combination <i>IFNG</i> and <i>PTGS1</i> (black circles) and ten relative partners (gray circles) generated by GeneMania online software [45].
<p>Possible physical interactions (pink), co-expression (violet), pathway (blue), genetic interactions (green), and shared protein domains (yellow) are shown. IDO1 âindoleamine 2,3âdioxygenase 1; IFNGâinterferon gamma; IFNGR1 âinterferon gamma receptor 1; IFNGR2 âinterferon gamma receptor 2; IRF1 âinterferon regulatory factor 1; MPOâmyeloperoxidase; PTGISâprostaglandin I2 (prostacyclin) synthase; PRKCDâprotein kinase C delta; PTGS1 âprostaglandinâendoperoxide synthase 1; PTGS2 âprostaglandinâendoperoxide synthase 2; PTPN2 âprotein tyrosine phosphatase, nonâreceptor type 2; PTPN6 âprotein tyrosine phosphatase, nonâreceptor type 6.</p