4 research outputs found

    Chromosomal and plasmid-encoded enzymes are required for assembly of the R3-type core oligosaccharide in the lipopolysaccharide of Escherichia coli O157:H7.

    Get PDF
    The type R3 core oligosaccharide predominates in the lipopolysaccharides from enterohemorrhagic Escherichia coli isolates including O157:H7. The R3 core biosynthesis (waa) genetic locus contains two genes, waaD and waaJ, that are predicted to encode glycosyltransferases involved in completion of the outer core. Through determination of the structures of the lipopolysaccharide core in precise mutants and biochemical analyses of enzyme activities, WaaJ was shown to be a UDP-glucose:(galactosyl) lipopolysaccharide alpha-1,2-glucosyltransferase, and WaaD was shown to be a UDP-glucose:(glucosyl)lipopolysaccharide alpha-1,2-glucosyltransferase. The residue added by WaaJ was identified as the ligation site for O polysaccharide, and this was confirmed by determination of the structure of the linkage region in serotype O157 lipopolysaccharide. The initial O157 repeat unit begins with an N-acetylgalactosamine residue in a beta-anomeric configuration, whereas the biological repeat unit for O157 contains alpha-linked N-acetylgalactosamine residues. With the characterization of WaaJ and WaaD, the activities of all of the enzymes encoded by the R3 waa locus are either known or predicted from homology data with a high level of confidence. However, when core oligosaccharide structure is considered, the origin of an additional alpha-1,3-linked N-acetylglucosamine residue in the outer core is unknown. The gene responsible for a nonstoichiometric alpha-1,7-linked N-acetylglucosamine substituent in the heptose (inner core) region was identified on the large virulence plasmids of E. coli O157 and Shigella flexneri serotype 2a. This is the first plasmid-encoded core oligosaccharide biosynthesis enzyme reported in E. coli

    Structural and Biochemical Characterization of SrcA, a Multi-Cargo Type III Secretion Chaperone in Salmonella Required for Pathogenic Association with a Host

    Get PDF
    Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 Γ… revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS
    corecore