14 research outputs found

    Salt Effects on the Thermodynamics of a Frameshifting RNA Pseudoknot under Tension

    Full text link
    Because of the potential link between -1 programmed ribosomal frameshifting and response of a pseudoknot (PK) RNA to force, a number of single molecule pulling experiments have been performed on PKs to decipher the mechanism of programmed ribosomal frameshifting. Motivated in part by these experiments, we performed simulations using a coarse-grained model of RNA to describe the response of a PK over a range of mechanical forces (ffs) and monovalent salt concentrations (CCs). The coarse-grained simulations quantitatively reproduce the multistep thermal melting observed in experiments, thus validating our model. The free energy changes obtained in simulations are in excellent agreement with experiments. By varying ff and CC, we calculated the phase diagram that shows a sequence of structural transitions, populating distinct intermediate states. As ff and CC are changed, the stem-loop tertiary interactions rupture first, followed by unfolding of the 33^{\prime}-end hairpin (IF\textrm{I}\rightleftharpoons\textrm{F}). Finally, the 55^{\prime}-end hairpin unravels, producing an extended state (EI\textrm{E}\rightleftharpoons\textrm{I}). A theoretical analysis of the phase boundaries shows that the critical force for rupture scales as (logCm)α\left(\log C_{\textrm{m}}\right)^{\alpha} with α=1(0.5)\alpha=1\,(0.5) for EI\textrm{E}\rightleftharpoons\textrm{I} (IF\textrm{I}\rightleftharpoons\textrm{F}) transition. This relation is used to obtain the preferential ion-RNA interaction coefficient, which can be quantitatively measured in single-molecule experiments, as done previously for DNA hairpins. A by-product of our work is the suggestion that the frameshift efficiency is likely determined by the stability of the 55^{\prime}-end hairpin that the ribosome first encounters during translation.Comment: Final draft accepted in Journal of Molecular Biology, 16 pages including Supporting Informatio

    A new approach for efficient simulation of Coulomb interactions in ionic fluids

    Full text link
    We propose a simplified version of local molecular field (LMF) theory to treat Coulomb interactions in simulations of ionic fluids. LMF theory relies on splitting the Coulomb potential into a short-ranged part that combines with other short-ranged core interactions and is simulated explicitly. The averaged effects of the remaining long-ranged part are taken into account through a self-consistently determined effective external field. The theory contains an adjustable length parameter sigma that specifies the cut-off distance for the short-ranged interaction. This can be chosen to minimize the errors resulting from the mean-field treatment of the complementary long-ranged part. Here we suggest that in many cases an accurate approximation to the effective field can be obtained directly from the equilibrium charge density given by the Debye theory of screening, thus eliminating the need for a self-consistent treatment. In the limit sigma -> 0, this assumption reduces to the classical Debye approximation. We examine the numerical performance of this approximation for a simple model of a symmetric ionic mixture. Our results for thermodynamic and structural properties of uniform ionic mixtures agree well with similar results of Ewald simulations of the full ionic system. In addition we have used the simplified theory in a grand-canonical simulation of a nonuniform ionic mixture where an ion has been fixed at the origin. Simulations using short-ranged truncations of the Coulomb interactions alone do not satisfy the exact condition of complete screening of the fixed ion, but this condition is recovered when the effective field is taken into account. We argue that this simplified approach can also be used in the simulations of more complex nonuniform systems.Comment: To be published in Journal of Chemical Physic

    Shape changes and cooperativity in the folding of central domain of the 16S ribosomal RNA

    Get PDF
    Both the small and large subunits of the ribosome, the molecular machine that synthesizes proteins, are complexes of ribosomal RNAs (rRNAs) and a number of proteins. In bacteria, the small subunit has a single 16S rRNA whose folding is the first step in its assembly. The central domain of the 16S rRNA folds independently, driven either by Mg2+ ions or by interaction with ribosomal proteins. In order to provide a quantitative description of ion-induced folding of the ∼350 nucleotide rRNA, we carried out extensive coarse-grained molecular simulations spanning Mg2+ concentration between 0–30 mM. The Mg2+ dependence of the radius of gyration shows that globally the rRNA folds cooperatively. Surprisingly, various structural elements order at different Mg2+ concentrations, indicative of the heterogeneous assembly even within a single domain of the rRNA. Binding of Mg2+ ions is highly specific, with successive ion condensation resulting in nucleation of tertiary structures. We also predict the Mg2+-dependent protection factors, measurable in hydroxyl radical footprinting experiments, which corroborate the specificity of Mg2+- induced folding. The simulations, which agree quantitatively with several experiments on the folding of a three-way junction, show that its folding is preceded by formation of other tertiary contacts in the central junction. Our work provides a starting point in simulating the early events in the assembly of the small subunit of the ribosome

    Noise associated with nonconservative forces in optical traps

    Get PDF
    It is known that for a particle held in an optical trap the interaction of thermal fluctuations with a nonconservative scattering force can cause a persistent nonequilibrium probability flux in the particle position. We investigate position fluctuations associated with this nonequilibrium flux analytically and through simulation. We introduce a model which reproduces the nonequilibrium effects, and in which the magnitude of additional position fluctuations can be calculated in closed form. The ratio of additional nonconservative fluctuations to direct thermal fluctuations scales inversely with the square root of trap power, and is small for typical experimental parameters. In a simulated biophysical experiment the nonconservative scattering force does not significantly increase the observed fluctuations in the length of a double-stranded DNA tether

    Crowding Promotes the Switch from Hairpin to Pseudoknot Conformation in Human Telomerase RNA

    Full text link
    Formation of a pseudoknot in the conserved RNA core domain in the ribonucleoprotein human telomerase is required for function. In vitro experiments show that the pseudoknot (PK) is in equilibrium with an extended hairpin (HP) structure. We use molecular simulations of a coarse-grained model, which reproduces most of the salient features of the experimental melting profiles of PK and HP, to show that crowding enhances the stability of PK relative to HP in the wild type and in a mutant associated with dyskeratosis congenita. In monodisperse suspensions, small crowding particles increase the stability of compact structures to a greater extent than larger crowders. If the sizes of crowders in a binary mixture are smaller than the unfolded RNA, the increase in melting temperature due to the two components is additive. In a ternary mixture of crowders that are larger than the unfolded RNA, which mimics the composition of ribosome, large enzyme complexes and proteins in E. coli, the marginal increase in stability is entirely determined by the smallest component. We predict that crowding can restore partially telomerase activity in mutants, which dramatically decrease the PK stability.Comment: File "JACS_MAIN_archive_PDF_from_DOC.pdf" (PDF created from DOC) contains the main text of the paper File JACS_SI_archive.tex + 7 figures are the supplementary inf
    corecore