
PHYSICAL REVIEW E 84, 031108 (2011)

Noise associated with nonconservative forces in optical traps
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It is known that for a particle held in an optical trap the interaction of thermal fluctuations with a nonconservative
scattering force can cause a persistent nonequilibrium probability flux in the particle position. We investigate
position fluctuations associated with this nonequilibrium flux analytically and through simulation. We introduce a
model which reproduces the nonequilibrium effects, and in which the magnitude of additional position fluctuations
can be calculated in closed form. The ratio of additional nonconservative fluctuations to direct thermal fluctuations
scales inversely with the square root of trap power, and is small for typical experimental parameters. In a
simulated biophysical experiment the nonconservative scattering force does not significantly increase the observed
fluctuations in the length of a double-stranded DNA tether.
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I. INTRODUCTION

In a single-beam optical trap [1], a dielectric particle is
confined to the focal volume by a force �Fg proportional to the
optical intensity gradient. The force exerted on the particle and
the resulting displacement can be measured by detecting the
deflection of the trapping beam [2–4]. Using this technique, the
movement of a biological macromolecule attached to a trapped
particle can be measured with near-angstrom precision [5].
However, the trapped particle is also subject to a scattering
force �Fs , first noted by Ashkin [6], which cannot be expressed
as the gradient of any function. Assuming the geometrical
center of the trapping beam is defined as the origin of
coordinates, with beam propagation in the positive z direction,
the scattering force acts mainly in the +z direction and causes
the effective trap center to lie at positive z, typically within
a wavelength of the geometrical trap center. In the limit of a
small particle, the scattering force is proportional to the local
intensity and decreases with distance from the beam axis.
For particles that are large compared with the wavelength,
the scattering force can be estimated using ray tracing, and
increases with small displacement from a diffraction-limited
trap center [6] (although it must ultimately decrease for
large displacements). For small displacements both curves,
illustrated in Fig. 1(a), have a roughly quadratic dependence
on distance from the beam axis.

The scattering force acting on a small particle is maximum
when the particle is on the beam axis. As a result the particle
tends to fall towards negative z when a thermal fluctuation
pushes it away from the beam axis, and climb towards
positive z as it returns to the beam axis. This gives rise to
a persistent mean circulation, a nonequilibrium flux that has
been characterized as a fountain of probability, or a Brownian
vortex [7,8]. (In the large-particle limit a circulation with the
opposite sense of rotation is expected.) Such a nonequilib-
rium flux, which would not arise in a conservative system,
results from the interaction of the nonconservative force with
the thermal fluctuations. Recently the nonequilibrium flux
associated with the scattering force has been detected in
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high-resolution experiments [9]. Another experimental study
concluded that additional position fluctuations associated
with the scattering force were too small to measure in a
particular experimental realization [10]. From a fundamental
point of view it is important to know if additional position
fluctuations due to the scattering force would impact different
types of high-precision experiments and how such fluctuations
would depend on the physical parameters of the optical
trap.

In this paper we introduce a simplified model of the
system which allows us to identify an additional source of
force fluctuations associated with the nonequilibrium flux
and analytically calculate the resulting position fluctuations.
This provides an analytical answer to the question raised
in the original study: To what extent does the nonequi-
librium probability flux influence measurements in optical
traps [7]?

II. SIMPLIFIED MODEL

Our goal is to define a model system which reproduces
the behavior of the nonconservative system with as simple
a force field as possible. We model the gradient force as a
harmonic restoring force and assume that the scattering force is
axial:

�F (�r) = −αxxx̂ − αyyŷ − αzzẑ + Fs(ρ)
�

z, (1)

where αi is the stiffness of the harmonic force along the i
axis and Fs(ρ) is the magnitude of the scattering force as
a function of ρ =

√
x2 + y2. We will expand the scattering

force as Fs(ρ) = S0 + S2ρ
2, where the second-order term is

nonconservative because it cannot be derived from a scalar
potential and does net work on a particle that moves on a
closed path. For the small particle, assuming a scattering term
of the form F0 exp(−ρ2/2σ 2), we have S2 = −F0/2σ 2, where
σ is the standard deviation of the scattering force profile,
which depends on both the beam profile and particle radius.
For the large particle, Taylor expansion of the Ashkin form
around the effective trap center gives S2 = 0.8F0/rp

2, where
rp is the particle radius [6]. We will show that this model
reproduces the circulation effect observed in previous studies
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FIG. 1. (Color online). (a) Scattering force profiles for a small
particle (blue dotted line) and large particle (solid black line). The
small-particle curve is a Gaussian with standard deviation σ =
0.32 μm and the large-particle curve is based on the ray tracing
result with a particle of radius 1 μm. (b) Circulation is defined
as the area swept out in the ρ-z plane, where clockwise motion is
considered positive by convention. (c) Circulation obtained from the
nonconservative system (solid black) and reference system (red dotted
line) driven by identical thermal force fluctuations. The difference is
shown in the blue dashed line. Physical parameters: T = 298 K,
αx = αy = 2.0 pN/μm, αz = 0.4 pN/μm, time step dt = 0.0001 s,
particle radius rp = 0.25 μm, and nominal scattering force given by
the Gaussian function in panel (a) with F0 = 0.04 pN on the beam
axis. (d) Same but using the large-particle form of the scattering force
with rp = 1.0 μm and F0 = 0.04 pN on the beam axis.

while permitting important simplifications in the simulations
and analytical analysis. We will also show that the analytical
solution reproduces the fluctuations observed, not only in a
simulation of the simplified system, but in a realistic simulation
which takes into account the three-dimensional nature of the
intensity gradient and scattering force fields.

The nonequilibrium probability flux in the particle position
�r that results from the nonconservative component of the
scattering force was characterized by Roichman et al. in terms
of the circulation �, as illustrated in Fig. 1(b) [7]. Each discrete
measurement of �r contributes a differential circulation of

d
−→
� =

�ξold × �ξnew

2A
, (2)

where �ξ is a two-dimensional vector defined by �ξ = {ρ,z}.
The characteristic area A defines a unit of circulation, and the
cross product defines the sign of circulation to be positive for
clockwise motion in the ρ-z plane.

Previous work has shown that circulation is dominated
by the Brownian motion of the particle, requiring very
long simulation times to achieve statistical convergence [11].
However, the contribution of the nonconservative force to the
circulation can be efficiently calculated by comparing results
of the nonconservative system with a conservative reference
system, in which the particle is subject to identical Brownian
force fluctuations, but in which the nonconservative scattering

force is replaced by a constant force. By looking at the
difference in circulation between the original system and the
reference system, circulation fluctuations arising directly from
thermal forcing cancel out, isolating the circulation arising
from the nonconservative force.

We use a Langevin equation of the form �FT(t) + �F (�r) −
β �̇r = 0 to simulate the model optical trap, where β is the
Stokes drag, �F (�r) is obtained from Eq. (1), and �FT(t) is a δ

function-correlated stochastic noise term whose components
have spectral density |F̃T(ω)|2 = 2kBTβ. We define two
primary nonconservative systems using the two scattering
curves in Fig. 1(a) and compare them with conservative
reference systems which are driven by identical thermal force
fluctuations. The results are shown in Figs. 1(c) and 1(d).
Thermal diffusion dominates for short times, causing large
fluctuations in circulation, while the nonconservative contribu-
tion manifests itself as a linear increase in net circulation over
longer times, with opposite signs for large and small particles,
as expected. There is a large degree of cancellation of the
circulation fluctuations when the primary and reference system
are subtracted, revealing the excess circulation arising from
the nonconservative term. The excess circulation obtained
from subtraction of the reference system from the primary
system is exactly the same as the value obtained over long
time scales using a single simulation, but comparison with
a matched reference system gives us additional insight into
the generation of circulation, since it reveals that even over
short time intervals the excess circulation accumulates at a
nearly constant rate. This supports the view that the effect
of the nonconservative force is a continuous biasing of
fluctuations. More importantly, Figs. 1(c) and 1(d) confirm
that our simplified system reproduces the nonequilibrium flux
which is the essential feature of the nonconservative scattering
force.

III. CALCULATION OF EXCESS FLUCTUATIONS

We now consider whether the nonconservative force results
in additional fluctuations in the particle position. In the
harmonic approximation, and assuming that the scattering
force acts only in the positive z direction [Eq. (1)], the x-y
components of the total force acting on the particle do not
depend on the z coordinate. As a result, the evolution of the x-y
coordinates is independent of the z motion, and is unaffected
by the axial scattering force.

The independence of the transverse dynamics from the axial
motion allows us to calculate the excess position fluctuations
in the nonconservative system. For a simple harmonic trap,
Brownian fluctuations in z are described by a thermal force FT

acting in a strongly damped equation of motion FT(t) − αzz −
βż = 0. Using the known spectral density of the thermal force
term, this gives rise to fluctuations in the z coordinate with
Fourier spectral density:

|z̃T(ω)|2 = |F̃T(ω)|2
α2

z + β2ω2
= 2kBTβ

α2
z + β2ω2

, (3)

where similar results apply to x and y. However, in the
nonconservative system the z coordinate has an additional
source of noise since the scattering force depends on ρ2 and
fluctuates in time as the distance between the particle and
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FIG. 2. (Color online). (a) Fourier spectral density of the thermal
driving force (triangles) and the nonconservative z scattering force
using the large-particle profile of Ashkin (circles) and its second-order
Taylor expansion (squares) for dynamics obtained from numerical
simulation of a Langevin equation based on Eq. (1) with the same
parameters as Fig. 1. Black line: The analytical prediction for
scattering force fluctuations [Eq. (4)]. (b) Fourier spectral density
of the z motion driven by thermal forcing (triangles) and by the
nonconservative scattering force (circles). Black lines: Analytical
predictions for z fluctuations driven by thermal forcing [Eq. (3)] and
the scattering force [Eq. (5)]. Inset: RMS z fluctuations arising from
the thermal forcing and from the scattering force as a function of αx ,
assuming αz and F0 are linearly related to αx .

the beam axis varies, despite the fact that the scattering force
itself has no explicit time dependence. This gives an additional
fluctuating driving term for the z motion which originates
entirely in the x-y dynamics of the particle. Since the x-y
dynamics are independent of the z motion, this additional term,
which is formally a function of ρ, is effectively a stochastic
function of time, a pseudothermal forcing term which is
uncorrelated with the thermal force fluctuations FT(t) driving
the z thermal motion. In contrast to FT(t), the scattering force
fluctuations manifest finite time autocorrelations determined
by the continuous x-y motion, or equivalently, have a spectral
density which is related to the spectral density of fluctuations
in ρ2. An extensive calculation which is detailed in the
Supplemental Material [12] indicates that the nonconservative
driving term arising from x fluctuations has Fourier spectral
density:

|F̃nc(ω)|2 = 8(kBT )2S2
2

αxβ
(
ω2 + 4α2

x

β2

) , (4)

where similar results are obtained for y fluctuations. The equa-
tion of z motion is linear, so the solution can be decomposed
into components arising from the thermal driving term [Eq. (3)]

and the nonconservative driving term. The spectral density of
z fluctuations resulting from the nonconservative force is

|z̃nc(ω)|2 = 16(kBT )2S2
2

αxβ3
(
ω2 + 4α2

x

β2

)(
ω2 + α2

z

β2

) , (5)

where we set αx = αy for clarity.
The Fourier spectra of the thermal and nonconservative

forces are shown for the case of a large particle in Fig. 2(a) and
for a small particle in Fig. 3(a) (using both the full scattering
form and its second-order expansion). The Fourier spectra of
the fluctuations in z driven by the thermal and nonconservative
forces are shown in Figs. 2(b) and 3(b). Precise agreement
is found between the analytical spectra, indicated by solid
curves, and the simulations. It is clear from these spectra that
the characteristic time scale of nonconservative fluctuations is
determined by the x-y dynamics of the particle, rather than by
the circulation time inferred from data in Figs. 1(c) and 1(d).
The uncertainty in a measurement of the particle position is
found by integrating the spectral density over the bandwidth of
the measurement. However, the total root mean square (RMS)
fluctuations of the thermal and nonconservative components of
the displacement, zT and znc (integrated over all frequencies)
are a useful practical measure of noise in experiments where
the localization of the particle is of primary importance. We
find that the standard deviation for thermal fluctuations is
σT = ( kBT

αz
)1/2, and for nonconservative fluctuations is σnc =

10 S2kBT√
11α2

x

(where we set αx = αy = 5αz). These are plotted as

a function of x stiffness in the insets of Figs. 2(b) and 3(b),
with the assumption that the scattering force and trap stiffness

FIG. 3. (Color online). Similar to Fig. 2, except the particle is
assumed to be small compared with the wavelength, and the scattering
profile is assumed to have a Gaussian form which corresponds to the
intensity profile of the trapping beam at the trap center. Physical
parameters are identical to those used in the small-particle simulation
in Fig. 1.
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both scale linearly with the trap optical power P. The ratio
of the standard deviations of nonconservative and thermal
fluctuations scales as P −1/2, indicating that the importance
of the nonconservative effect decreases as the trap becomes
stiffer. Using the physical parameters chosen for the spectra
in Fig. 2, the RMS fluctuations arising from the direct thermal
fluctuations are ∼1000 times larger than those arising from
the scattering force. Since the thermal and nonconservative
noise sources are uncorrelated and add in quadrature, the
augmentation of the amplitude of total fluctuations is <1 part
in 106.

IV. APPLICATION TO A REALISTIC FORCE FIELD

In the preceding section, we have shown that the simplified
system, consisting of a harmonic trapping force and an axial
scattering force which depends only on ρ, reproduces the
nonequilibrium probability flux which is the main feature
of the nonconservative scattering force. The simplifications
facilitated an analytical calculation of the level of excess noise
introduced by the nonconservative force. In this section we
consider a realistic system, in which the gradient (trapping)
and scattering forces are derived from the three-dimensional
Gaussian optical mode. Although this realistic system con-
tains nonlinearities, cross talk between axial and transverse
dynamics, and a scattering force which is no longer purely
axial, we will show that the analytic calculations derived
from the simplified model accurately predict scattering force
fluctuations observed in simulations of the realistic system.

In the realistic simulation we take the gradient force to
be proportional to the gradient of the optical intensity and the
scattering force to be proportional to the local Poynting vector,
which is proportional to the intensity itself and acts along the
phase gradient direction [13]. This form is appropriate for
a small particle, but can also be used as a highly accurate
parametrization of the measured force on a finite-size particle
as a function of displacement in experiments. The three-
dimensional, nonlinear force functions introduce new effects
not present in the linearized system. Differential stiffness
decreases with distance from the geometrical center of the trap.
In addition, the optical mode spreads as it propagates past the
trap center, and as a result there is a decrease in the transverse
restoring force with increasing z in the neighborhood of the
effective trap center. The spreading of the optical mode also
causes the scattering force to weaken with increasing z as well
as with increasing ρ. The z dependence of the intensity gradient
and scattering forces will cause transverse force fluctuations to
arise from axial position fluctuations, which was not included
in the simpler model previously introduced. The question
arises whether these additional effects result in an increase
in fluctuations of the particle position.

To address this issue we run the simulation of a particle
subject to the scattering force vector and gradient force based
on the three-dimensional Gaussian mode [13]. However, in this
case the scattering force includes a conservative contribution
which can be represented as the gradient of a potential, as
we explain later. In the neighborhood of the effective trap
center the z component of the scattering force decreases
with increasing z. This predominantly linear dependence of
the axial scattering force on z serves as an enhancement of

the axial restoring force experienced by the particle—the
particle is more strongly trapped in the presence of the
z-dependent scattering force than it would be if the scattering
force were independent of z. The z dependence of the axial
scattering force can therefore be represented by a potential,
and does not contribute to the nonequilibrium effects that
result from nonconservative forces. We therefore decompose
the scattering force into conservative and nonconservative
components and calculate the power spectra of the two
components separately. The decomposition is done as fol-
lows. The magnitude of the full scattering force is of the
form

�Fs(x,y,z) = F0

(
1

1 + z2
/
z2

0

)
exp

[
−2(x2 + y2)

ω2
0

(
1 + z2

/
z2

0

)
]

Ŝ,

where Ŝ is a unit vector in the direction of the Poynting
vector (which corresponds to the phase gradient direction),
ω0 is the Gaussian spot size, and z0 is the Rayleigh distance,

z0 = πω2
0n

λ
. We wish to calculate the potential whose gradient

most closely matches the total scattering force in the region
visited by the particle. The difference between the actual
scattering force and this conservative approximation would
represent the nonconservative component of the scattering
force. Since the particle is confined to a small volume
centered on the beam axis, it is sufficient to choose the
conservative component of the scattering force to duplicate
the z dependence of the z component of the scattering force
on the beam axis, �Fsc(z) = �Fs(0,0,z), where the lack of x
and y dependence is determined by the criteria that �Fsc(z)
is conservative. The nonconservative component is obtained
by subtracting the conservative component from the full
scattering force, �Fsnc(x,y,z) = �Fs(x,y,z) − �Fsc(z). Making
use of this decomposition of the scattering force, the effective
conservative force acting on the particle is the combination of
the intensity gradient force and the conservative component
of the scattering force. The remainder of the scattering
force, �Fsnc(x,y,z), contains the transverse dependence of the
scattering force and is the driving term for nonconservative
effects.

Figure 4 shows the fluctuations in the scattering force
in a simulation using the three-dimensional restoring and
scattering forces. The decomposition into conservative and
nonconservative components only applies to the calculation
of the power spectra of the scattering force; the particle
dynamics are generated from the full scattering force. The
system parameters are comparable to those used to produce
Fig. 3, although the effective trap power has been increased by
a factor of ∼5% to maintain the same effective trap stiffness
at the equilibrium point in the nonlinear simulation. The
scattering profile, adopting the small-particle limit, is strictly
defined by the three-dimensional optical mode, resulting in a
Gaussian profile with standard deviation σ = ω(z)/2 where
ω(z)2 = ω0(1 + z2/z2

0). The value of ω0 has been set to
0.411 μm in order to obtain the nominal 5:1 ratio between axial
and transverse stiffness that we use to evaluate our analytical
theory. The resulting scattering profile is narrower than the
one that was used in the previous simulations and results in
somewhat stronger scattering fluctuations in Fig. 4.
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FIG. 4. (Color online). Power spectra of force components acting
on a small particle assuming the gradient force and scattering
force are proportional to the intensity gradient and Poynting vector,
respectively, of the three-dimensional Gaussian optical mode. Fourier
spectral density of the thermal driving force (circles), axial gradient
force (squares), conservative axial component of the scattering force
(triangles), nonconservative axial component of the scattering force
(inverted triangles), and the x component of the scattering force
(diamonds). The solid line represents the analytical calculation of the
nonconservative scattering force contribution predicted by Eq. (4).
The time step is 5 μs, and the physical parameters are αx = αy =
2.01 pN/μm, and αz = 0.360 pN/μm and F0 = 0.04 pN (evaluated
at the effective trap center) using the point particle approximation
with ω0 = 0.411 μm. The effective z stiffness contains a contribution
of 0.026 pN/μm from the conservative component of the scattering
force.

Figure 4 has several interesting features. The thermal force
spectrum |F̃T(ω)|2 and the intensity gradient force spectrum
|F̃g(ω)|2 correspond closely at low frequency. Comparison
of the phases of the two spectra (not shown) indicates they
are anticoherent. This is consistent with the fact that low-
frequency wandering of the particle is largely suppressed
by the optical trap, which implies that the gradient force
neutralizes the thermal force at low frequency. Above the
characteristic frequency f0 = αz/2πβ of axial fluctuations,
the spectrum of the gradient force falls below that of the
thermal forcing, consistent with the fact that high-frequency
jiggling of the particle is relatively unaffected by the trapping
potential. The spectrum of the conservative component of the
scattering force |F̃sc(ω)|2 is similar to that of the gradient
force, but at lower amplitude. These spectra are phase coherent
and confirm a slight enhancement of the restoring force
by the conservative component of the scattering force. The
spectrum of the z component of the nonconservative scattering
force component |F̃snc(ω)|2 represents the driving force for
nonconservative fluctuations. Unlike |F̃sc(ω)|2, it is generated
by x-y motion of the particle and its dependence on the z
coordinate has been subtracted off. It therefore acts as a
generator of independent axial fluctuations, rather than as a
component of the restoring force. The solid line shows the
prediction of Eq. (4) for |F̃snc(ω)|2, using the effective stiffness
(including contributions from the gradient and conservative
scattering forces) and the on-axis scattering force F0, both
evaluated at the effective trap center. There is good agreement

between the analytical calculation based on the linearized
system and the dynamics found in the fully nonlinear system.
The level of fluctuations in the simulation is slightly in excess
of the analytical prediction, apparently because the trap is
barely stable for these parameters and the particle transiently
wanders from the effective trap center to regions where the
effective stiffness is smaller than the nominal value. This small
discrepancy vanishes if the trap power is increased by a factor
of 2 or more. The spectrum of force fluctuations associated
with the nonconservative component of the scattering force
is nearly four orders of magnitude below the direct thermal
forcing. Figure 4 also shows the spectrum of fluctuations in
the x (tangential) component of the scattering force, which
is smaller than both the conservative and nonconservative
components of the axial scattering force, and is therefore not
a significant source of additional fluctuations.

The decomposition of position fluctuations into compo-
nents arising from distinct forcing terms that was performed
in the linear system is no longer possible in the nonlinear
system. However, the relative strengths of forcing from
conservative and nonconservative forces have been calculated
with high precision, and there is no reason to believe that the
nonlinear effects or cross terms in the realistic model would
preferentially amplify force fluctuations originating from
nonconservative relative to those originating from thermal
fluctuations. Therefore the increase in position fluctuations in
the presence of nonconservative effects should be in proportion
to the increase in force fluctuations. No significant excess
fluctuations were detected in the spectra of x, x2, and z when
comparing the simulation of the nonlinear system to one based
on an equivalent linear system (data not shown), confirming
that the additional dynamic processes present in the nonlinear
model (nonlinearities and cross terms in the equations of
motion) do not change the character or amount of fluctuations
introduced by the nonconservative force term.

V. ADDITIONAL FLUCTUATIONS WHEN STRETCHING
A DNA TETHER

The previous results apply to the case where there is no
external force on the trapped particle and it remains in the
neighborhood of the effective trap center. In single-molecule
biophysics experiments, the optical trap is typically used to
apply a substantial force to a biological macromolecule, and
the equilibrium position, taking into account the external force,
will no longer lie on the beam axis. In this regime the scattering
force will no longer be an even function of the displacement x
or y from the equilibrium position and may have a substantial
nonaxial component. As in the previous section, where the
nonlinearity of the system prevents us from decomposing the
motion into components arising from distinct forcing terms, we
can gain insight into the level of nonequilibrium fluctuations
by measuring fluctuations of the scattering force itself in a
realistic simulation.

We model an experiment in which the optical trap is used to
measure variations in the length of a DNA tether. We assume
the DNA is anchored to a cover slip, the tether making a
45◦ angle with the beam axis. As in Fig. 4, we assume that the
scattering force and gradient force are proportional to the local
Poynting vector and intensity gradient vector, respectively, of
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FIG. 5. (Color online). Simulation of a particle tethered by a DNA
molecule at 45◦, in which the tether attachment point is displaced
from the trap center in the x-z plane such that the tension in the
DNA is three-fourths of the maximum force the trap can exert at
45◦. (a) Schematic illustrates the effective conservative force charac-
teristics for the particle. The combined gradient force, conservative
component of the scattering force, and tether force were linearized
around the equilibrium point. The principal axes of the resulting
elasticity tensor are illustrated by arrows which are superimposed on
the probability density function of particle position obtained in the
simulation. (b) Fourier spectral density of the thermal driving force
(circles), combined gradient and tether force (squares), conservative
axial component of the scattering force (triangles), nonconservative
axial component of the scattering force (inverted triangles), and the
x component of the scattering force (diamonds). The solid curve
represents the analytical calculation of the nonconservative scattering
force contribution, as described in the text. Simulations performed at
tension 1.2 pN with rp = 0.250 μm, Gaussian spot size ω = 0.411 μm,
and F0 = 0.4 pN. The effective stiffnesses are au = 21.7 pN/μm and
av = 6.4 pN/μm with φ = −10◦.

the three-dimensional Gaussian mode of the trapping beam
[13]. The attachment point is chosen so that the force exerted
on the tether is three-fourths of the maximum force that the
optical trap can produce at 45◦, well past the regime of a linear
restoring force. Unlike the simulation illustrated in Fig. 4, the
particle is sufficiently far from the trap center that cross terms,
such as the dependence of nonaxial force on axial position,
and vice versa, are substantial. The force vs extension curve of
the DNA tether is calculated using the Marko-Siggia wormlike
chain model with contour length of 2.0 μm [14].

Force fluctuations in the simulation of a tether experiment
are shown in Fig. 5. The curves shown in Fig. 5(b) correspond
to those shown in Fig. 4, except that the effective potential
experienced by the particle includes the tension in the DNA
tether. As in Fig. 4, the spectrum of the combined restoring
force (including the gradient force and the tether force) cancels

the thermal force at low frequency. The conservative part
of the scattering force opposes the gradient force (since the
particle is pulled to negative z by the DNA tether) but is small
compared to the gradient and tether forces. The spectra of the
nonconservative components of the scattering force (axial and
nonaxial) are again far below the level of the thermal force
spectrum.

The theoretical framework previously defined can be used
to calculate the nonconservative nonaxial scattering force
fluctuations. In the present case, assuming the attachment
pulls the particle away from the beam axis along the x
direction, the expansion of the axial scattering force about
equilibrium position will have a nonzero first-order term,
�Fs = (S0 + S1x)ẑ. To first order in the displacement x, the

spectrum of scattering force fluctuations can be obtained
by simply multiplying the spectrum of x fluctuations by S1.
However, the spectrum of x fluctuations is more complex for
a trapped particle which is tethered to the surface than for an
otherwise unconstrained particle. For a free particle trapped
on the beam axis the motion is easily resolved into axial
and transverse components, which have different effective
stiffnesses. The tethered particle experiences a more complex
force field which is the combination of the optical trap and
DNA elasticity. By combining the effective potential energy
arising from the optical trap, the tether elasticity, and the
conservative portion of the scattering force, we can define
the total potential energy of the particle as a function of
position, U(x,y,z). To first order the force arising from a small
displacement in an arbitrary direction is found by multiplying
the displacement vector by the Hessian matrix of U(x,y,z).
However, the Hessian evaluated at the equilibrium position
is not diagonal, meaning a displacement along the x, y, or
z coordinate axis results in a force which is generally not
parallel to the displacement. The eigenvectors of the Hessian
matrix, however, define a coordinate system in which the
Hessian matrix is diagonal, and in which its diagonal elements
are the stiffnesses for displacement along the corresponding
eigenvectors. The dynamics along the three eigenvectors are
independent and governed by the corresponding stiffness.
(This procedure is not necessary for the particle trapped on
the beam axis because the axial and transverse directions
themselves are eigenvectors.) The result of this analysis is
illustrated in Fig. 5(a). Two eigenvectors lying in the x-z
plane are superimposed on a probability density function of
the particle position in the simulation. The axis of maximum
stiffness, labeled u, makes an angle φ = −10◦ with the positive
x axis while the stiffness along the eigenvector v is a factor of
3 smaller (see Fig. 5 caption for values). As expected, the
maximum observed particle fluctuations are along the axis of
smallest stiffness.

The spectrum of nonconservative axial force fluctuations
is predicted as follows. The power spectrum of position
fluctuations along each of the principal axes is calculated
from Eq. (3), using the corresponding values of α. The
projections of these fluctuations on the x direction are
calculated, and since the dynamics corresponding to different
principal axes are independent, the projected power spectra
are additive. The resulting combined spectrum is multiplied
by S1 to obtain the spectrum of nonconservative axial force
fluctuations. The solid line shows this calculated spectrum,

031108-6



NOISE ASSOCIATED WITH NONCONSERVATIVE FORCES . . . PHYSICAL REVIEW E 84, 031108 (2011)

which agrees precisely with the measured fluctuation spectrum
of the nonconservative component of the axial scattering
force.

The same considerations applying to Fig. 4 apply here. Due
to the nonlinear nature of the equation of motion fluctuations
of particle position cannot be decomposed into components
arising from conservative and nonconservative forcing terms.
However, the additional force fluctuations introduced by the
ρ dependence of the axial and nonaxial components of the
scattering are very small compared with the other fluctuating
forces. Since there is no reason to assume that nonconservative
fluctuations will be amplified disproportionately compared to
fluctuations arising from conservative forces, the nonconserva-
tive forces are not expected to cause an appreciable degradation
in a measurement of the tether length.

Our general conclusion is that the method of calculating
additional fluctuations associated with the nonconservative
scattering force that we developed in the context of the
simplified model can be applied to this experimental configu-
ration, provided the system is linearized about the equilibrium
point and that transverse dependence of the scattering force
is represented by a Taylor expansion. As in the case of the
simplified model, the additional fluctuations associated with
the nonconservative force are small. The main effect of the
scattering force is a slight reduction in the effective stiffness
of the optical trap in the neighborhood of the equilibrium
point.

VI. CONCLUSION

In conclusion, we have introduced a simplified model
of trapping with a nonconservative scattering force which
fully reproduces the nonequilibrium flux reported previously,
and which allows us to identify a distinct noise mechanism
associated with the nonequilibrium flux. The model correctly
predicts fluctuations in simulations of the simplified system,
of the fully nonlinear system and of a system including
a DNA tether, provided that the transverse dependence of
the scattering force is represented as a Taylor series in ρ

and the effective potential experienced by the particle is
linearized about the effective equilibrium point. The addi-
tional fluctuations are extremely broadband, in contrast to
the extremely long time period that characterizes the net
circulation rate. Although the effect is small for typical
configurations, the formulas obtained establish the dependence
of this additional noise on the system parameters and can
be used to guide the design of an experiment that would
maximize or minimize the effect. A realistic simulation of an
experiment in which the length of a DNA molecule is measured
indicates that the additional RMS fluctuations associated with
the scattering force in a typical experimental configuration do
not significantly increase the experimental uncertainty in this
common type of measurement. The most significant effect of
the scattering force in such experiments is modification of the
effective stiffness of the trap.
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