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How ions affect RNA folding thermodynamics and kinetics is an important but a vexing problem
that remains unsolved. Experiments have shown that the free energy change, �G(c), of RNA upon
folding varies with the salt concentration (c) as, �G(c) = kc ln c+ const, where the coefficient kc is
proportional to the difference in the ion preferential coefficient, ��. We performed simulations of a
coarse-grained model, by modeling electrostatic interactions implicitly and with explicit representa-
tion of ions, to elucidate the molecular underpinnings of the relationship between �G and ��. The
simulations quantitatively reproduce the heat capacity for a pseudoknot, thus validating the model.
We show that �G(c) calculated directly from �� varies linearly with ln c (c < 0.2 M), for a hairpin
and the PK, demonstrating a molecular link between the two quantities. Explicit ion simulations
also show the linear dependence of �G(c) on ln c at all c with kc = 2kBT , except that �G(c) values
are shifted by ⇠2 kcal/mol higher than experiments. The discrepancy is due to an underestimation
of � for both the folded and unfolded states while giving accurate values for ��. The predictions
for the salt dependence of �� are amenable to test using single-molecule pulling experiments. The
framework provided here can be used to obtain accurate thermodynamics of RNA folding.

INTRODUCTION

In common with proteins, RNA molecules that carry
out cellular functions also adopt specific, compact con-
formations, which require ions. In the absence of counter
ions, compact RNA structures are energetically unfavor-
able due to the close proximity of negatively charged
phosphate groups. Therefore, to enable RNA molecules
to fold, counterions from the buffer solution must con-
dense onto the sugar-phosphate backbone, which would
reduce the charges on the phosphate groups. The coun-
terion condensation establishes a close relationship be-
tween RNA structures populated at equilibrium and ionic
environment [1–11]. Divalent ions, typically Mg2+, are
particularly efficient in stabilizing RNA folded struc-
tures [3, 12–17]. Representative high resolution struc-
tures of folded RNA show individual Mg2+ ions are
bound to multiple phosphate groups [18, 19]. However,
the presence of divalent ions is not essential for the sta-
bility of many RNAs with relatively simple architectures.
For example, the �1 frameshifting pseudoknot from beet
western yellow virus (BWYV PK, Figure 1) [14, 20, 21] is
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stable in relatively low concentrations of monovalent salt
even in the absence of Mg2+. Experiments have shown
that the thermodynamic stability, �G, of the BWYV
PK in a Na+ buffer increases linearly with the logarithm
of the salt molar concentration, c [14]. Likewise, experi-
mental data for the stability of RNA hairpins [22, 23] and
of polymeric RNA duplexes and triplexes [24] in mono-
valent salt buffers corroborate the linear dependence,
�G(c) = �kc ln c+ const, where the value of kc depends
on the specific RNA structure. A similar relationship
has been established for oligo and polymeric DNA dou-
ble helices [25, 26], for which kc is known to be largely
insensitive to the DNA sequence. Furthermore, if mono-
valent salt buffers contain relatively low concentrations
of divalent salt, c2 ⌧ c, the observed dependence of �G
on ln c2 is also found to be linear [14].

Despite the wealth of data on these systems and the-
oretical and several computational studies [9, 11, 27–31]
a molecular understanding of ion effects on RNA folding
is lacking. There have been efforts to improve atomistic
force field of RNA [32] and ion–RNA interactions [33]
with applications to interesting biological problem [34].
However, to our knowledge, it is still difficult to to simu-
late folding-unfolding transitions of RNA molecules (ex-
cept tetramers) with quantitative predictions of the ion-
dependent free energies and how they change as RNA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/387838854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dave.thirumalai@gmail.com


2

b

- - -CUUCGG

GAAGCCAU GU

C

1

-

6

-

22

-
- - -

17

-

5’
_

3’
_

C

A
C UC

L10 HP

a

BWYV PK

stem 1

stem 2

GCGCCUGCC

GGCGCGG CA

C GG
A

AC

G

AA
A

-10-18

7
-

25

-

3

-

3’

- --

--- - -

5’
_

_
14

-

FIG. 1. Secondary structures of (a) BWYV PK and (b) L10
HP. The BWYV PK does not have a phosphate group at the
5’-end. The L10 HP contains a 5’-pG and the total of 22
phosphate groups.

folds using atomic detailed simulations. Here, we go a
long way in solving the problem by using molecular sim-
ulations of a coarse-grained model combined with theory
to predict the folding free energies of an RNA hairpin
and a pseudoknot (PK) in the presence of both explicit
and implicit Na+ ions.

Pioneering theoretical studies of the influence of ionic
conditions on the stability of nucleic acid structures have
linked the coefficient kc to the quantity known as the
ion preferential interaction coefficient, � [35, 36]. For
monovalent salts, kc = 2kBT��, where �� = �f � �u

is a difference in the preferential interaction coefficient
between the folded and unfolded states of the nucleic
acid molecule. The coefficient � is defined as the par-
tial derivative,

� =

✓
@c

@cn

◆

µ

, (1)

where cn is the nucleic acid concentration and µ is the
chemical potential of ions [35, 36]. In other words, � is
the number of excess ions per nucleic acid molecule, as
compared to the solution without nucleic acid but with
the same value of µ. The limit cn ! 0 is assumed in
eq. (1) to avoid the influence of interactions between the
polyions.

The established theoretical framework relating �G(c)
and �� has no underlying model for the fold-
ing/unfolding transition in RNA or DNA. Instead it relies
on the identity

��G(c) ⌘ �G(c)��G(c0)

= [Gf(c)�Gu(c)]� [Gf(c0)�Gu(c0)]

= [Gf(c)�Gf(c0)]� [Gu(c)�Gu(c0)] , (2)

where Gf and Gu are the free energies of the folded and
unfolded states, and c0 is a reference salt concentration.
Using eq. (2) one can obtain the electrostatic contribu-
tion, ��G(c), to the total stability, �G(c), from indi-
vidual electrostatic free energies of the folded and un-
folded states. No model for the transition between the
two states is required. The electrostatic free energy of
the folded state is given by [35, 36] Gf(c) � Gf(c0) =

�2kBT
R c
c0
�fd ln c, where c is the monovalent salt con-

centration (a similar expression holds for the unfolded
state). In the case of divalent salt, the prefactor 2 on the
right-hand side is omitted [21]. It follows from eq. (2)
and the expression relating the free energy and �f that

��G(c) = �2kBT

Z c

c0

��d ln c. (3)

Experimental evidence that �G(c) changes linearly with
ln c implies that �� is largely insensitive to c.

The relationship between nucleic acid thermodynamic
stability and �� has been validated for different systems
using combined theoretical-experimental and purely ex-
perimental approaches. In several studies the preferen-
tial interaction coefficients of multi-stranded nucleic acid
polymers were calculated from either Manning’s theory of
counterion condensation [37–39] or numerical solutions of
the nonlinear Poisson-Boltzmann equation [36]. In these
theoretical treatments, duplexes, triplexes and single-
stranded nucleic acids were modeled as infinitely long
rigid rods characterized by three different (adjustable)
linear charge densities. The resulting theoretical es-
timates of �� were consistent with the experimental
thermodynamic data for the order-disorder transitions
of polymeric DNA and RNA in monovalent salt buffers
with c < 0.2 M. In another, purely experimental study
of the BWYV PK, it proved possible to obtain accu-
rate estimates of �� as a function of Mg2+ concentra-
tion using fluorescence [21]. The curve ��G(c), which
was derived from these measurements and an analogue
of eq. (3) (without the prefactor 2), agreed well with the
Mg2+-dependent stability of the BWYV PK extracted
directly from melting experiments [14, 21].

Here, we employ computer simulations to investigate
the quantitative relationship between �G(c) and �� for
small RNA molecules in monovalent salt buffers. We
have previously developed a coarse-grained simulation
model for RNA, which included implicit description of
the ionic environment [30]. The parameters of the model
were trained by reproducing the experimentally mea-
sured melting temperatures of oligonucleotides, which in
part contributed to the success of the model. We demon-
strated the model is thermodynamically accurate for sev-
eral RNA molecules over a wide range of monovalent salt
concentration c, and temperature T . An important fac-
tor contributing to the accuracy of our modeling is that
we can fairly accurately capture the ensemble of RNA
conformations including folding-unfolding transitions, as
opposed to rigid-molecule description of the folded and
unfolded states. This is because the sampling using our
coarse-grained modeling is adequate, as evidenced by the
good agreement between the results of simulations and
experiments for RNA folding thermodynamics. In this
paper, we present the results of the same simulation
model for the folding thermodynamics of the BWYV PK
(Figure 1). We obtain ��G(c) in two ways: (a) di-
rectly, from the folding/unfolding equilibrium at various
c and (b) indirectly, by first computing the coefficients
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�f , �u and then employing eq. (3). We find that both
approaches give the same dependence of ��G on ln c,
even though the underlying dependence of �� on ln c is
non-monotonic. In addition, we report the results of sim-
ulations of hairpin L10 (Figure 1) using the same model
as for the BWYV PK, but with explicit description of
ions. In these simulations, we employ a grand canoni-
cal ensemble for ions and obtain � by means of direct
counting of ions in the simulation box. We find that ��

resulting from this counting procedure is consistent with
the slope of �G vs. ln c extracted directly from our L10
melting curves. Finally, comparisons of the simulation
and the observed �G(c) demonstrate relative advantages
and limitations of implicit and explicit modeling of ions
in simulations.

METHODS

RNA model with implicit ionic buffer

All details of the coarse-grained simulation model that
do not pertain to electrostatic interactions can be found
in our earlier paper [30]. We assume that the coarse-
grained sites representing RNA bases and sugars have
no charge. The charge on each coarse-grained phosphate
group is taken to be �Qe, where e is the proton charge
and Q is smaller than 1 due to partial charge neutraliza-
tion by cations due to ion condensation. We determine
the value of the reduced charge on the phosphate groups
using Manning’s theory of counterion condensation [37],
as was done previously for the Tetrahymena ribozyme [3].
For an infinitely long rod-like polyelectrolyte, with charge
�e per contour length b0, Manning’s theory predicts [37]

Q = Q⇤
(T ) =

b

lB(T )
, (4)

where b = b0/zc, zc is the valence of screening cations,
and lB is the Bjerrum length,

lB =

e2

"kBT
. (5)

The reduced charge Q depends on the temperature T
nonlinearly because the dielectric constant of water, ",
decreases with T as [40]

"(T ) = 87.740�0.4008T+9.398⇥10

�4T 2�1.410⇥10

�6T 3,
(6)

where T is in units of �C. We have previously shown that
simulations using b = b0 = 4.4 Å in eq. (4) reproduce
the measured stabilities and melting profiles of different
RNA molecules, including the L10 HP, over a wide range
of monovalent salt concentration [30]. Our results below
demonstrate that b = 4.4 Å provides good agreement
with experimental data for the BWYV PK as well.

The uncondensed ions in the simulation model are de-
scribed by the Debye-Hückel theory. For a given confor-
mation of an RNA molecule in monovalent salt solution,

the electrostatic free energy in the Debye-Hückel approx-
imation, GDH, is [41]

GDH =

Q2e2

2"

X

i,j

exp (�|ri � rj |/�)
|ri � rj |

, (7)

where ri, rj are the coordinates of phosphates i and j, �
is the Debye-Hückel screening length,

��2
=

8⇡⇢

"kBT
, (8)

and ⇢ is the bulk number density of counterions or coions,
⇢ = 6.022⇥ 10

23c. The corresponding expression for the
preferential interaction coefficient in the Debye-Hückel
approximation, �DH, is

�DH =

Q2e2

8�"kBT

X

i,j

exp (�|ri � rj |/�) , (9)

where ri, rj are the same as in eq. (7). One way to derive
eq. (9) is from the spatially varying number densities of
counterions and coions,

⇢+(r) = ⇢ exp

✓
�e�(r)

kBT

◆
,

⇢�(r) = ⇢ exp

✓
e�(r)

kBT

◆
, (10)

where �(r) is the total electrostatic potential at r due to
the ions and phosphates i,

�(r) =
Qe

"

X

i

exp (�|r� ri|/�)
|r� ri|

. (11)

By expressing �DH as the space integral,

�DH =

Z ✓
⇢+(r) + ⇢�(r)

2

� ⇢

◆
dr ⇡ ⇢

2

✓
e

kBT

◆2 Z
�(r)2dr,

(12)
and substituting eq. (11) in eq. (12), we recover eq. (9).
Equation (9) can also be obtained from

�DH = � 1

2kBT

@GDH

@ ln c
= � 1

2kBT

@GDH

@ ln ⇢
, (13)

where GDH is given by eq. (7).
In simulations of the BWYV PK, we use GDH and

@GDH/@ri to compute the electrostatic energy and forces
between phosphate groups, thus implicitly taking into ac-
count the ionic buffer. The preferential interaction coef-
ficient is computed by averaging the expression in eq. (9)
over all sampled conformations at given c and T . We
note that the full expression for the preferential interac-
tion coefficient should also include the contribution from
the condensed ions,

� = �DH + (1�Q)Np/2, (14)

where Np is the total number of phosphate groups in
the RNA molecule. Because the condensed ion term is
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independent of RNA conformation it does not contribute
to �� or the salt dependence of �G. However, it must
be taken into account when comparing the preferential
interaction coefficients obtained in implicit and explicit
ion simulations.

RNA model with explicit ionic buffer

In simulations of the L10 HP in NaCl solution, the
Na+ and Cl� ions are modeled explicitly as spheres
with an appropriate charge, Qi, and radius, Ri. Sol-
vent molecules are not explicitly included in simulation.
For two sites i and j with charges Qi and Qj (ions or
phosphates), the electrostatic interaction as a function of
distance r is modeled using the Coulomb potential UC,

UC =

QiQje2

"r
. (15)

Ewald sums are used to compute the total electrostatic
potential and force for each site. Because Manning’s the-
ory should not be invoked when treating ions explicitly,
the charge on phosphate groups Q = �1.

Excluded volume between any sites i and j is described
by the modified Lennard-Jones potential,

UmLJ = "ij ⇥
"✓

1.6

r + 1.6�Dij

◆12

�2

✓
1.6

r + 1.6�Dij

◆6

+ 1

#
, r  Dij ,

UmLJ(r) = 0, r > Dij , (16)

where Dij = Ri +Rj and "ij =
p
"i"j .

The potentials UC, UmLJ and parameters Qi were
adopted from our earlier work [31], where we showed that
RNA thermodynamics is relatively insensitive to the pa-
rameterization of monovalent ions. The ionic radius and
"i for sodium ion, which were not listed in the supple-
mentary information in [31] are Ri = 1.868 Å and "i =
0.00277 kcal mol�1, respectively. All the remaining ele-
ments of the force field are carried over from the implicit
ion model [30].

The explicit ion simulations are implemented in the
grand ensemble for Na+ and Cl� with the purpose of
determining the preferential interaction coefficient �. For
given c and T , we first compute the chemical potential of
a neutral ion pair in a canonical simulation of NaCl in the
absence of RNA using the Widom insertion technique.
Once the chemical potential is known, it is used in a
grand-canonical simulation of the L10 HP in NaCl. In
the grand-canonical simulation a single attempt to add
or remove an ion pair is made at each time step, and the
preferential interaction coefficient is obtained by simply
averaging the excess number of ions in the simulation
box.

Finally, as discussed in the context of our original
model [30], it is only possible to use a weighted histogram

technique for data analysis if the interaction potentials
are either independent or linearly dependent on T . The
Coulomb potential UC in eq. (15) depends on T nonlin-
early through the dielectric constant ". Therefore, to be
able to use weighted histograms, the UC actually em-
ployed in simulations was expanded to first order in T
around T = 50

�C (in the middle of the relevant temper-
ature range). The same linear expansion is also applied
to Q in eq. (14) for direct comparison of � obtained from
the implicit and explicit ion models.

General simulation details

The dynamics of RNA and ions were simulated by solv-
ing the Langevin equation of motion. In explicit ion simu-
lations a single L10 HP molecule was contained in a cubic
box with side 150 Å, and the number of Na+ and Cl� ions
was calculated using c and the simulation box volume. A
single trajectory was generated for all considered c and
T in implicit and explicit ion simulations. For each c and
T , the simulations were performed for at least 25 µs after
equilibration, through which we collected at least 10,000
configurations of the RNA and ions. Note that we set
the friction to be low, 1% of water viscosity, in Langevin
dynamics to enhance the sampling efficiency [42]. Other
details of the Langevin dynamics simulations, which are
the same for implicit and explicit ion models, are given
in our earlier paper [30]. The reader is referred to the
same paper for a description of data analysis techniques,
including a structure-independent method to calculate
the RNA stability �G. As a rough guide for the reader,
the kind of simulations we described here can be executed
readily using a typical computer cluster with several hun-
dred CPUs.

RESULTS

Implicit ion simulations of the BWYV PK

We first discuss our simulation results for the BWYV
PK (Figure 1), whose high-resolution crystal structure is
known (PDB entry 437D). The list of hydrogen bonds
in the BWYV PK (Table 1) reveals an extensive tertiary
structure which involves base triples. The stability of the
BWYV PK tertiary structure was found to be pH sensi-
tive and related to the protonation state of base C8 [20].
Additional experiments showed that this base was pro-
tonated in > 90% cases at pH 7.0 [14]. Assuming pH
7.0 in simulations, we added a hydrogen bond between
N3 of C8 and O6 of G12 to the list of hydrogen bonds
in order to model the protonated base of C8. Figure 2a
shows the heat capacity of the BWYV PK obtained in
experiment at 0.5 M K+ and pH 7.0 [20], and in im-
plicit ion simulations with c = 0.5 M and b = 4.4 Å. The
agreement between simulation and experiment is excel-
lent, without any adjustments to the model parameters.
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TABLE I. Hydrogen bonds in the BWYV PK

Residues in contact Hydrogen bonds
C3-G18 N4-O6; N3-N1; O2-N2
G4-C17 N1-N3; N2-O2; O6-N4
G4-A20 N2-N3; O2’-N1
C5-G16 N4-O6; N3-N1; O2-N2
C5-A20 O2-O2’
G6-C15 N1-N3; N2-O2; O6-N4
G6-A21 O2’-OP1
G7-C14 N1-N3; N2-O2; O6-N4
G7-A24 N2-N1; N3-N6
C8-G12 N4-N7; N3-O6
C8-A25 O2-N6
C8-C26 O2-N4
C10-G28 N4-O6; N3-N1; O2-N2
C11-G27 N4-O6; N3-N1; O2-N2
G12-C26 N1-N3; N2-O2; O6-N4
C14-A25 O2’-N1; O2-N6
C15-A23 O2’-N1; O2-N6
G16-A21 N2-OP2; O2’-N7
C17-A20 O2-O2’

The model accurately predicts the two peaks in the heat
capacity profile, which indicate melting of stem 1 at a
higher temperature and melting of stem 2 together with
the tertiary structure at a lower temperature. The two
melting temperatures are 65.9 �C and 90.0 �C from our
simulations, whereas the experimental values are 64.7 �C
and 90.9 �C [20]. The finding that stem 1 melts at the
higher melting temperature is in accord with the prin-
ciple that assembly of PKs in general is determined by
the stabilities of the constituent secondary structural el-
ements [43], which in this PK are stem 1 and stem 2.
Figure 2a also shows the predicted heat capacity of the
BWYV PK at c = 0.05 M. The data demonstrate that
the melting transition of stem 2 is more sensitive to c
than the melting transition of stem 1. Because stem 1
is stable around the melting temperature of stem 2, the
folding of stem 2 yields the native conformation of the
BWYV PK. The pseudoknot is distinguished by three
aligned strands of the negatively charged backbone and
its stability (or melting temperature) is expected to de-
pend strongly on the ion concentration. By contrast, the
folded conformation of stem 1, the hairpin, has only two
RNA strands in close contact and thus shows a weaker
sensitivity to c.

We have determined the stability of the BWYV PK
at 37 �C from its folding/unfolding equilibrium, using a
structure-independent method described previously [30].
Our simulation correctly reproduced a linear dependence
of �G on ln c for c < 0.2 M, but it predicted an upward
curvature of �G vs. ln c for c > 0.2 M (Figure 2b). As is
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FIG. 2. (a) Measured [20] heat capacity, C, of the BWYV
PK in 0.5 M K+ as a function of T (symbols). The solid curve
(red) is the simulation data for c = 0.5 M. The dashed curve
is the simulation data for c = 0.05 M (experimental data
not available for comparison). The computed C(T ) is plotted
with respect to the heat capacity of the unfolded state at 130
�C. (b) Measured [14] stability �G of the BWYV PK at 37
�C as a function of c (symbols). The solid curve is �G ob-
tained from the analysis of the folding/unfolding equilibrium
in simulations at various c. The thick dashed curve (red)
is �G(c) = �G(c0) + ��G(c), where c0 = 0.2 M, �G(c0)
is given by the solid curve, and ��G(c) is computed using
eq. (3) and ��(c) shown in Figure 3b. kc specified in the
figure panel is the slope of a linear fit of the simulation data
for c < 0.2 M (straight dashed line). The mean squared er-
ror between the simulation line and experimental data is 0.42
(kcal/mol)2.

apparent below, this curvature can be traced to a sharp
decrease in �� for large c which is due to the breakdown
of the linearized Poisson-Boltzmann approximation. It
is worth noting that even at c ⇡ 0.5M the theoretical
result for �G is only ⇡ 7% higher than the experimental
value. Because there is only one experimental data in the
range c > 0.2 M (Figure 2b), we cannot provide an ac-
curate assessment of the magnitude of the discrepancies
between simulation and experiment. There are two possi-
bilities. (1) Given that the predicted heat capacity of the
BWYV PK at 0.5 M is in near quantitative agreement
with the experimental data (Figure 2a) suggests that the
measured �G at c ⇡ 0.5M could have larger errors. (2)
Alternatively, it is possible that small discrepancy be-
tween simulations and experiments does not imply the
same behavior in the stability. Experiments for other
RNAs and more data in the concentration range between
0.2M  c  0.5 are needed to compare more precise com-
parisons between simulations and experiments.

We now illustrate the connection between the preferen-
tial interaction coefficient � and stability of the BWYV
PK. Figure 3a shows �DH obtained from eq. (9), where
�DH = �� (1�Q)Np/2, as a function of T . The low and
high T limits of this dependence are �f � (1 � Q)Np/2
and �u � (1 � Q)Np/2 in the fully folded and unfolded
states, respectively. At intermediate temperatures, �� =

�f � �u is estimated as a difference between the “folded”
and “unfolded” baselines plotted in Figure 3a. We find
that �� at 37 �C is a non-monotonic function of salt
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tion of T , from simulations of the BWYV PK with c = 0.024
M (solid curve) and c = 0.5 M (dash-dotted curve, red). The
dashed lines are the baselines representing the folded and un-
folded states. The baselines are obtained by expanding �DH

to second order in T around T = 0

�C (folded) and T = 130

�C (unfolded). (b) �� = �f � �u at 37 �C as a function of c.

concentration c (Figure 3b). Knowing �G at a refer-
ence c0 and ��(c), we can calculate �G at any c using
�G(c) = �G(c0) + ��G(c) and eq. (3). The result of
this calculation at 37 �C is indistinguishable on the scale
of the figure from �G(c) obtained directly from the fold-
ing/unfolding equilibrium (Figure 2b). Interestingly, al-
though ��(c) is a non-monotonic function of c, it yields
an approximately linear dependence of �G(c) on ln c for
c < 0.2 M. Therefore, linear fits of experimentally deter-
mined �G(c) do not give us an unambiguous estimate of
��. This point has already been discussed in the con-
text of the nonlinear Poisson-Boltzmann equation for the
BWYV PK in mixed Na+ and Mg2+ buffers, where the
dependence of �� on the divalent ion concentration was
also found to be non-monotonic [14].

Explicit ion simulations of the L10 HP

To our knowledge, the simulations of the L10 HP re-
ported here are the first computational study of RNA
thermodynamics using a coarse-grained model with ex-
plicit ions, besides our own studies of ribozyme fold-
ing [31]. It was our intention to choose one of the most
basic RNA molecules, such as the L10 HP, as a first test
example. The same hairpin was also used as a bench-
mark for the development of an implicit ion model in
our earlier work [30], because its thermodynamic stabil-
ity was measured over a wide range of c [22]. Because a
high-resolution structure of the L10 HP is not available,
we assume that the L10 HP native structure is an ideal
A-form helix with six Watson-Crick base pairs and an un-
structured loop (Figure 1b). Free energy minimization of
secondary structures by Mfold [44], with its default pa-
rameters, predicts that the assumed structure is the only
reasonable structure with �G = �5.7 kcal/mol.

We carried out grand-canonical simulations of the L10
HP in the temperature range from 0 to 130 �C for c =

FIG. 4. (a) Chemical potential of a neutral ion pair, µ, as
a function of T , from explicit ion simulations of NaCl in the
absence of RNA (filled symbols). Squares: c = 0.05 M, circles
(red): c = 0.2 M, triangles (green): c = 1 M. Experimental
data [45–47] are shown as open symbols. (b) Heat capacity,
C, as a function of T , from grand-canonical simulations of the
L10 HP in NaCl solution. The C(T ) is plotted with respect
to the heat capacity of the unfolded state. Solid line: c = 0.05
M, dashed (red): c = 0.2 M, dash-dotted (green): c = 1 M.

0.05, 0.2 and 1 M. For every combination of c and T , the
chemical potential of ions was determined from a canon-
ical simulation of NaCl in the absence of RNA. The de-
pendence of the chemical potential on T is found to be
linear for all c (Figure 4a), which permits a straightfor-
ward analysis of the grand-canonical data using weighted
histograms [30]. The chemical potentials obtained in our
simulations agree with experimental data [45–47] except
for small deviation at T < 40

�C and c =1 M. The good
comparison between the calculated and experimental val-
ues, without having to tweak any parameters, further val-
idates our explicit ion model [31]. The L10 HP melting
curves at three different c are characterized by a single
melting peak, indicating cooperative melting of the hair-
pin stem (Figure 4b). As anticipated, the position of
the melting peak (or the melting temperature) increases
substantially with ion concentration c.

We have determined the stability �G(c) of the L10
HP at 37 �C from its melting data using the structure-
independent method described in our original paper [30].
In the same paper we used this method to obtain �G(c)
of the L10 HP at 37 �C from implicit ion simulations.
The resulting �G(c) from the explicit and implicit ion
models are compared in Figure 5a [30]. The explicit ion
model yields a linear dependence of �G on ln c in the
entire range of salt concentrations from 0.05 to 1 M. The
linear fit of �G vs. ln c results in �� = 0.78 ± 0.07,
which compares well with �� = 0.85 obtained by fitting
the experimental data. However the actual values of �G
are about 2 kcal/mol higher in the simulations than in
experiment (Figure 5a) at all c. The predictions of the
implicit ion model compare more favorably with the ex-
perimental �G(c) in the range c < 0.2 M (Figure 5a).
This is because in the derivation of this model we used
�G(c) of the L10 HP for calibration of the reduced RNA
charge Q [30]. For c > 0.2 M, the dependence of �G on
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FIG. 5. (a) Measured [22] stability, �G, of the L10 HP at
37 �C as a function of c (squares). Circles (red) show �G
obtained from the explicit ion simulations reported here. Tri-
angles (green) show �G obtained from our implicit ion sim-
ulations reported previously [30]. kc specified in the figure
panel are the slopes of the linear fits of the experimental and
explicit ion simulation data (solid lines). (b–d) Preferential
interaction coefficient, �, as a function of T , from explicit
(symbols) and implicit (solid curves, red) ion simulations of
the L10 HP in NaCl solution. c is given in the figure panels.
The dashed baselines in (b) and (c) are the least squares fits
of the linear portions of the � vs. T curves. �� at 37 �C is
defined as a difference between the low and high T baselines.
Standard errors in �G and � were estimated by dividing the
simulation data into two blocks and computing these quanti-
ties for each block.

ln c in the implicit ion model is strongly nonlinear due to
the breakdown of the Debye-Hückel approximation, as in
the case of the BWYV PK (Figure 2b). In contrast, the
linear behavior is captured by the model that models ion
explicitly.

The discrepancy in the estimates of �G obtained
from the implicit and explicit ion simulations can be
traced back to the preferential interaction coefficients
� (Figures 5b–d). For explicit ions, we define � =

0.5 (NNa +NCl)�NNaCl, where NNa and NCl are the av-
erage numbers of Na+ and Cl� ions in a grand-canonical
simulation of an RNA molecule in NaCl solution with
concentration c and volume V , and NNaCl = 6.022 ⇥
10

23cV . The preferential interaction coefficient for im-
plicit ions is defined by eqs. (9) and (14). We find that
the explicit ion model consistently underestimates � for
all considered c and T (Figures 5b–d). Because RNA
molecules depend on counterion condensation for their
ability to fold, the smaller values of � translate to higher

free energies �G. For explicit ion simulations at c = 0.05
and 0.2 M, we were able to estimate �� at 37 �C from
the dependence of � on T as illustrated in Figures 5b and
5c. The resulting values, �� = 0.79±0.08 at 0.05 M and
0.9 ± 0.4 at 0.2 M, agree within the error bars with ��

extracted directly from the melting data. A large noise in
� at 1 M prevented us from estimating �� for this salt
concentration (Figure 5d). Very long simulation times
would be required to sufficiently reduce the noise level
because typical �� are 3 orders of magnitude smaller
than NNaCl at 1 M (NNaCl = 2032 for the simulation box
with side 150 Å).

The stability data in Figure 5a reveal the relative ad-
vantages and disadvantages of the implicit and explicit
ion models. The implicit ion model essentially has one
more free parameter, the reduced RNA charge Q (eq. 4).
As demonstrated by our results presented here and previ-
ously [30], a single choice of Q works well for a variety of
RNA molecules and solution conditions. Therefore, the
implicit ion model may in fact be a preferred method if
accurate estimates of �G are sought in the range c < 0.2
M. For larger salt concentrations, the dependence of �G
on ln c develops what appears to be a false curvature and
the model becomes less accurate.

By contrast, in the explicit ion model, the reduced
RNA charge is fixed at �1 and is not a free parame-
ter. The model consistently underestimates the value of
�, the effect which appears to be independent of T and
thus RNA conformation (Figures 5b–d). We conjecture
that this is a result of using a dielectric constant of water
in eq. (15), which is not expected to be very accurate
in the vicinity of an RNA molecule that has a smaller
dielectric constant. This can lead to an underestimation
of the number of ions directly associated with the RNA
backbone. The explicit ion model can still be useful in
determining the form of the dependence of �G on ln c, if
not the actual values of �G, since it does not break down
at high salt concentrations c > 0.2 M. Let us also empha-
size that neither BWYV PK nor L10 HP are stabilized
by site-specific interactions with monovalent ions, and
therefore both the implicit and explicit ion descriptions
are applicable. In the case when site-specific interactions
are present, for example in ribozymes, only the explicit
ion model will provide correct structural information on
the folded or partially folded states of the RNA [31].

Direct comparison of the explicit and implicit ion sim-
ulation data in Figure 5 shows that differences in � of
1.5–2 ions per RNA result in substantial differences in
�G. Therefore, it becomes apparent that if any force
field were to yield accurate estimates for �G it would
have to, in the first place, provide highly accurate esti-
mates for �. Here it is important to remember that �

does not include only the ions directly bound to RNA,
but it is defined as the total increase in the number of ions
caused by an introduction of RNA in the simulation box.
This and the long-range nature of the Coulomb potential
effectively makes � a long-range property, whose accu-
rate determination will require large simulation boxes to



8

avoid finite-size effects. The necessity for large simula-
tion boxes (or long simulation times) is just one technical
difficulty that may affect an accurate estimation of RNA
thermodynamics in simulations. A more general ques-
tion is if it is possible to devise a universal force field,
which includes only generic ion–RNA interactions and
no structure-specific adjustable parameters, that would
yield the correct ion numbers for diverse RNA systems.
Our present results show that in the absence of such a
model, simulations with implicit ions appears to be a
reasonably good option currently available, where ap-
plicable, for the determination of RNA thermodynam-
ics using simulations. We should also note that despite
limitations (lack of ion–ion correlations and treating ions
as point charges) apparently � values are well predicted
using Non-Linear Poisson-Boltzmann (NLPB) equation.
However, calculating �G(c) accurately requires sampling
the ensemble of conformations of the folded, unfolded and
intermediates (if any). Clearly, this requires simulations
of the kind performed here.

DISCUSSION

Effective charge on the phosphate groups for

RNA: Contrary to our expectations, we found that the
implicit ion version of the model yields more accurate
estimates for the RNA stability, �G as a function of
ion concentration for L10 HP. A key parameter deter-
mining �G is the effective charge of phosphate groups,
Q. In implicit ion simulations Q is calculated using the
counterion condensation theory for an infinite cylinder
with the mean axial distance between phosphate charges,
b [37]. By comparing with experimental data, we de-
termined the optimal value of the free parameter b to
be 4.4 Å [30]. This result can be placed in the con-
text of previous applications of counterion condensation
theory to order-disorder transitions in polymeric nucleic
acids [36, 38, 39, 48]. In these applications, all nu-
cleic acid structures were treated as infinite cylinders,
and the main distinction between the structures com-
prising a different number of strands was the mean dis-
tance, b, between the charges on the polymeric nucleic
acids. Double-stranded and triple-stranded helices were
characterized by 1.4 Å < b < 1.7 Å and b = 1 Å, re-
spectively [36]. The formalism predicted 3.2 Å < b <
4.2 Å for a single-stranded (rod-like) nucleic acid poly-
mer [36, 38, 39]. By contrast, we used one value of b to
describe both the folded and unfolded RNA in our simu-
lations. Because distance 4.4 Å is consistent with previ-
ous estimates of b for single-stranded nucleic acids, we as-
sume that it describes the geometry of the unfolded state
of RNA reasonably well. This is further supported by our
result that b = 4.4 Å works equally well for hairpins and
pseudoknots that have significantly different charge den-
sities in the folded state. We argue that specifying single
b is sufficient in simulations, because the concept of coun-
terion condensation must be invoked only in the unfolded

state. Indeed, in simulations, RNA are flexible and the
total charge density due to RNA and ions fluctuates in
response to conformational changes. Although this ver-
sion of the model does not include ions explicitly, they are
effectively taken into account through the Debye-Hückel
screening clouds in eq. (7). As RNA folds, the backbone
phosphates come in proximity, which results in a sub-
stantial overlap of the ionic clouds. Thus, any increase
in phosphate charge density or � upon folding is taken
into account through the conformational properties of
the model itself. Good agreement with experiment indi-
cates that the linear superposition of individual screening
clouds is a valid model for an increased counterion uptake
due to a conformational change. We speculate that the
linear approximation, and thus the implicit ion model,
will be quantitatively accurate for all folding transitions
identified by small ��.

Importance of RNA conformational ensemble

and ion–ion correlation effects: Beyond the linear
approximation, the electrostatic free energy of nucleic
acids has been assessed by solving the nonlinear Poisson-
Boltzmann equation using static fixed representations of
the folded and unfolded states [14, 41, 49, 50]. In this
case, the accuracy of the model is limited by the accuracy
of representing the ensemble of unfolded states, which is
typically described as a single conformation rather than
a dynamic ensemble of conformations. When it comes to
the study of RNA folding using simulations, it is more
practical to use an explicit ion simulation model than
to solve the NLPB equation at each time step. In the
explicit ion model presented here, Q = �1 and there
are no free parameters that may be varied to effectively
tune ion–RNA interactions. We find that, if a single di-
electric constant of water is used for all electrostatic in-
teractions, the predictions of the explicit ion model for
�G are quantitatively less accurate than those of the
implicit ion model. Although it was not done here, one
way to improve the explicit ion model would be to use
a distance-dependent dielectric constant in eq. (15). We
emphasize that, despite their shortcomings, explicit ion
simulations are the only valid way to study the effects of
ion size, many body ion–ion correlations, or site specific
ion–RNA interactions in determining nucleic acid prop-
erties [7–10, 16, 34, 51], as we recently demonstrated for
ribozymes, pseudoknots, and hairpins [31].

Uptake of ions as RNA folds and implications

for single molecule pulling experiments: The loga-
rithmic variation of �G(c) with monovalent ion concen-
tration has previously been demonstrated using optical
tweezers experiments [23] only for RNA hairpins. Such
experiments have been performed for RNA pseudoknots
at specific salt concentrations. It would be most inter-
esting to perform them over a range of concentrations in
order to most directly measure �G(c) as a function of c
in order to test the predictions made here for the BWYV
pseudoknot.

It is remarkable that the difference between ion uptake
per RNA between the folded and unfolded states is only
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between 1.5–2 (Figure 5), which is not that dissimilar
to other RNA molecules [52]. The small difference in ��

implies that there are a large number of ions that are ter-
ritorially bound to RNA even in the unfolded state, thus
affecting both the enthalpy and entropy of the disordered
RNA. Although ensemble experiments have been used to
obtain accurate estimates, it appears that single molecule
pulling experiments [53] combined with simulations [54]
are efficacious in directly obtaining the c-dependence of
��. The experimental tests of our predictions for the dif-
ferential uptake of ions between the folded and unfolded
states are most readily done using single molecule pulling
experiments [53, 55, 56].

CONCLUSIONS

We have presented and tested a coarse-grained model
to study the folding thermodynamics of RNA in implicit
and explicit ion simulations. Our model provides the
first unified framework to obtain the RNA thermody-
namic stability and ion preferential interaction coefficient
entirely from simulations, without resorting to any ex-
perimental measurements. Here, we performed an inde-
pendent validation of the analytical relationship between
these two quantities. Because the model and the proto-
cols are general, they can be used to calculate accurately
the folding thermodynamics of arbitrary RNA, thereby
providing the much needed insights into how ions control
their self-assembly.
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