1,664 research outputs found

    Towards semantic software engineering environments

    Get PDF
    Software tools processing partially common set of data should share an understanding of what these data mean. Since ontologies have been used to express formally a shared understanding of information, we argue that they are a way towards Semantic SEEs. In this paper we discuss an ontology-based approach to tool integration and present ODE, an ontology-based SEE

    Quantum dynamics of a vibrational mode of a membrane within an optical cavity

    Full text link
    Optomechanical systems are a promising candidate for the implementation of quantum interfaces for storing and redistributing quantum information. Here we focus on the case of a high-finesse optical cavity with a thin vibrating semitransparent membrane in the middle. We show that robust and stationary optomechanical entanglement could be achieved in the system, even in the presence of nonnegligible optical absorption in the membrane. We also present some preliminary experimental data showing radiation-pressure induced optical bistability.Comment: 6 pages, 2 figures. Work presented at the conference QCMC 2010 held on 19-23 July 2010 at the University of Queensland, Brisbane, Australi

    Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane

    Full text link
    We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We first derive the general multimode Hamiltonian describing the radiation pressure interaction between the cavity modes and the vibrational modes of the membrane. We then restrict the analysis to the standard case of a single cavity mode interacting with a single mechanical resonator and we determine to what extent optical absorption by the membrane hinder reaching a quantum regime for the cavity-membrane system. We show that membrane absorption does not pose serious limitations and that one can simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.Comment: 14 pages, 7 figure

    Optomechanical sideband cooling of a thin membrane within a cavity

    Full text link
    We present an experimental study of dynamical back-action cooling of the fundamental vibrational mode of a thin semitransparent membrane placed within a high-finesse optical cavity. We study how the radiation pressure interaction modifies the mechanical response of the vibrational mode, and the experimental results are in agreement with a Langevin equation description of the coupled dynamics. The experiments are carried out in the resolved sideband regime, and we have observed cooling by a factor 350 We have also observed the mechanical frequency shift associated with the quadratic term in the expansion of the cavity mode frequency versus the effective membrane position, which is typically negligible in other cavity optomechanical devices.Comment: 15 pages, 7 figure

    Optomechanically induced transparency in membrane-in-the-middle setup at room temperature

    Full text link
    We demonstrate the analogue of electromagnetically induced transparency in a room temperature cavity optomechanics setup formed by a thin semitransparent membrane within a Fabry-P\'erot cavity. Due to destructive interference, a weak probe field is completely reflected by the cavity when the pump beam is resonant with the motional red sideband of the cavity. Under this condition we infer a significant slowing down of light of hundreds of microseconds, which is easily tuned by shifting the membrane along the cavity axis. We also observe the associated phenomenon of electromagnetically induced amplification which occurs due to constructive interference when the pump is resonant with the blue sideband.Comment: 5 pages, 4 figure

    Trigger-disabling Acquisition System for Quantum Key Distribution failsafe against Self-blinding

    Full text link
    Modern single-photon detectors based on avalanche photodiodes offer increasingly higher triggering speeds, thus fostering their use in several fields, prominently in the recent area of Quantum Key Distribution. To reduce the probability of an afterpulse, these detectors are usually equipped with a circuitry that disables the trigger for a certain time after a positive detection event, known as dead time. If the acquisition system connected to the detector is not properly designed, efficiency issues arise when the triggering rate is faster than the inverse of detector's dead-time. Moreover, when this happens with two or more detectors used in coincidence, a security risk called "self-blinding" can jeopardize the distribution of a secret quantum key. In this paper we introduce a trigger-disabling circuitry based on an FPGA-driven feedback loop, so to avoid the above-mentioned inconveniences. In the regime of single-photon-attenuated light, the electronics dynamically accept a trigger only after detectors' complete recovery from dead-time. This technique proves useful to work with detectors at their maximum speed and to increase the security of a quantum key distribution setup.Comment: 5 pages, 3 figures. Version 2 corrected and improve

    Trace-Element Distribution on Sulfide Mineralization in Trento Province, NE Italy

    Get PDF
    Sulfide mineralization in the province of Trento (northeastern Italy) includes various mineral assemblages that are often silver-rich and have been exploited in different phases from the Middle Ages until the 20th century. This study investigates mineralized rocks from three historically important sites (Calisio mount, Erdemolo lake, and the locality of Cinque Valli), providing new analytical data (Inductively Coupled Plasma-Mass Spectrometry on bulk rocks, and Scanning Electron Microscopy on thin sections) that demonstrate that parageneses do not only include galena, chalcopyrite, and sphalerite but also accessory minerals, such as tetrahedrite, tennantite, acanthite, and sulfosalts (matildite/polybasite). This explains the high content of As (up to 278 ppm), Bi (up to 176 ppm), and Sb (up to 691 ppm) that are associated with Pb–Cu–Zn mineralization. Notably, trace-element ratios indicate that, although closely associated from a geographical point of view, the studied sites are not genetically related and have to be referred to in distinct mineralization events, possibly induced by three diverse magmatic and hydrothermal phases that occurred in the Variscan post-orogenic setting. Besides geological and petrogenetic reconstruction, the new data outline potential geochemical risks, as they reveal a high concentration of elements characterized by marked toxicity that can be transferred into the local soil and water. Therefore, future studies should be devoted to better investigating the metal distribution in the surroundings of ancient mining sites and their geochemical behavior during the weathering processes

    A Magnetic Drug Delivery Capsule Based on a Coil Actuation Mechanism

    Get PDF
    Current Wireless Capsule Endoscopic systems (WCE) provide only diagnostic tools, but in the future, advanced functionalities such as controllable drug delivery could be available for clinicians. This work introduces a Magnetic Drug Delivery Capsule (MDDC). The MDCC is based on a coil actuation mechanism that enables the deployment of a drug chamber from the device body. In this work, we present the prototype design and the results of bench trials that demonstrated the device ability to trigger the drug deployment by characterizing the magnetic field and resulting force
    • …
    corecore