3,654 research outputs found

    Medium effects in the pion pole mechanism (photon photon --> pion-zero --> neutrino-R antineutrino-L (neutrino-L antineutrino-R)) of neutron star cooling

    Full text link
    Nuclear medium effects in the neutrino cooling of neutron stars through the exotic reaction channel \gamma \gamma --> \pi^0--> \nu_R \bar{\nu_L} (\nu_L \bar{\nu_R}) are incorporated. Throughout the paper we discuss different possibilities of right-handed neutrinos, massive left-handed neutrinos and standard massless left-handed neutrinos (reaction is then allowed only with medium modified vertices). It is demonstrated that multi-particle effects suppress the rate of this reaction channel by 6-7 orders of magnitude that does not allow to decrease existing experimental upper limit on the corresponding \pi^0\nu\bar{\nu} coupling. Other possibilities of the manifestation of the given reaction channel in differente physical situations, e.g. in the quark color superconducting cores of some neutron stars, are also discussed. We demonstrate that in the color-flavor-locked superconducting phase for temperatures T < (0.1-10) MeV (depending on the effective pion mass and the decay width) the process is feasibly the most efficient neutrino cooling process, although the absolute value of the reaction is rather small.Comment: Replaced with revised version. New appendix, many clarifying comments, corrected figs 3 and

    A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems

    Get PDF
    In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users

    Theoretical fits of the \delta Cephei light, radius and radial velocity curves

    Full text link
    We present a theoretical investigation of the light, radius and radial velocity variations of the prototype δ\delta Cephei. We find that the best fit model accounts for luminosity and velocity amplitudes with an accuracy better than 0.8σ0.8\sigma, and for the radius amplitude with an accuracy of 1.7σ1.7\sigma. The chemical composition of this model suggests a decrease in both helium (0.26 vs 0.28) and metal (0.01 vs 0.02) content in the solar neighborhood. Moreover, distance determinations based on the fit of light curves agree at the 0.8σ0.8\sigma level with the trigonometric parallax measured by the Hubble Space Telescope (HST). On the other hand, distance determinations based on angular diameter variations, that are independent of interstellar extinction and of the pp-factor value, indicate an increase of the order of 5% in the HST parallax.Comment: accepted for publication on ApJ Letter

    Non-perturbative fixed points and renormalization group improved effective potential

    Get PDF
    The stability conditions of a renormalization group improved effective potential have been discussed in the case of scalar QED and QCD with a colorless scalar. We calculate the same potential in these models assuming the existence of non-perturbative fixed points associated to a conformal phase. In the case of scalar QED the barrier of instability found previously is barely displaced as we approach the fixed point, and in the case of QCD with a colorless scalar not only the barrier is changed but the local minimum of the potential is also changed.Comment: 6 pages, 8 figures, References added. Matching the journal versio

    Selective leaching of precious metals from electrical and electronic equipment through hydrometallurgical methods

    Get PDF
    The rapid human evolution has improved the quality of our lives through the use of technology. This not only resulted in increased raw materials extraction but also in the production of a worrying amount of electronic wastes. Indeed, in 2019 worldwide production of Electronic and Electric Equipment Waste (WEEE) was worth 50 million tons, causing several disadvantages such as the reduced space in landfills and massive shipping to countries with less restrictive regulations. On the other side, the billionaire electrical devices market is causing a significant increase in Precious Metals (PM) demand. Nowadays, the economic importance of PMs is as high as their supply risk. The answer to this problem consists of finding selective methods to extract and raffinate precious metals from disposed WEEE. On average, WEEEs contain around 30 % of plastics, 30 % ceramics, and 40 % metals; among these only around 0.1 % is characterized by PMs, such as gold, silver, rhodium, platinum, and palladium. The separation of PMs from other non-precious components is generally obtained using pyrometallurgy, which consists of fusing the wastes at temperatures up to 1500 ÷ 1700 °C. However, this method produces toxic gaseous byproducts and implies high energy costs. A possible alternative is given by hydrometallurgical processes, consisting of leaching the WEEE with solutions containing acids and oxidants at temperatures lower than 100°C. One of the main issues of the hydrometallurgical process is to leach copper and other non-precious base-metals selectively while keeping PMs in the solid-state. In this work, we report preliminary results of equilibrium and kinetic leaching tests in a well-stirred batch reactor, aimed at the optimization of the main operating parameters of a hydrometallurgical process for selective leaching of copper and other base-metals from Wasted Printed Circuit Boards (WPCBs). In particular, experiments have been carried out at different HCl and NaCl concentrations of the leaching solutions, exploring also the effect of temperature variation (20, 50, and 70 °C)

    The FDA “black box” warning on antidepressant suicide risk in young adults: More harm than benefits?

    Get PDF
    The decision made in the year 2004 by the U.S. Food and Drug Administration (FDA) to require a boxed warning on antidepressants regarding the risk of suicidality in young adults still represents a matter of controversy. The FDA warning was grounded on industry-sponsored trials carried one decade ago or earlier. However, within the past decade, an increasing number of reports have questioned the actual validity of the FDA warning, especially considering a decline in the prescription of the antidepressant drugs associated with an increase in the rate of suicidal events among people with severe depression. The present report provides an overview of the FDA black box warning, also documenting two Major Depressive Disorder patients whose refusal to undergo a pharmacological antidepressant treatment possibly led to an increased risk for suicidal behaviors. The concerns raised by the FDA black box warning need to be considered in real-world clinical practice, stating the associated clinical and public health implications
    corecore