1,169 research outputs found

    Numerical Study of Photo-Induced Dynamics in Double-Exchange Model

    Full text link
    Photo-induced spin and charge dynamics in double-exchange model are numerically studied. The Lanczos method and the density-matrix renormalization-group method are applied to one-dimensional finite-size clusters. By photon irradiation in a charge ordered (CO) insulator associated with antiferromagnetic (AFM) correlation, both the CO and AFM correlations collapse rapidly, and appearances of new peaks inside of an insulating gap are observed in the optical spectra and the one-particle excitation spectra. Time evolutions of the spin correlation and the in-gap state are correlated with each other, and are governed by the transfer integral of conduction electrons. Results are interpreted by the charge kink/anti-kink picture and their effective motions which depend on the localized spin correlation. Pump-photon density dependence of spin and charge dynamics are also studied. Roles of spin degree of freedom are remarkable in a case of weak photon density. Implications of the numerical results for the pump-probe experiments in perovskite manganites are discussed.Comment: 16 pages, 16 figure

    Real-space observation of current-driven domain wall motion in submicron magnetic wires

    Full text link
    Spintronic devices, whose operation is based on the motion of a magnetic domain wall (DW), have been proposed recently. If a DW could be driven directly by flowing an electric current instead of a magnetic field, the performance and functions of such device would be drastically improved. Here we report real-space observation of the current-driven DW motion by using a well-defined single DW in a micro-fabricated magnetic wire with submicron width. Magnetic force microscopy (MFM) visualizes that a single DW introduced in the wire is displaced back and forth by positive and negative pulsed-current, respectively. We can control the DW position in the wire by tuning the intensity, the duration and the polarity of the pulsed-current. It is, thus, demonstrated that spintronic device operation by the current-driven DW motion is possible.Comment: Accepted and published in PR

    Electronic structure and electric-field gradients analysis in CeIn3CeIn_3

    Full text link
    Electric field gradients (EFG's) were calculated for the CeIn3CeIn_3 compound at both 115In^{115}In and 140Ce^{140}Ce sites. The calculations were performed within the density functional theory (DFT) using the augmented plane waves plus local orbital (APW+lo) method employing the so-called LDA+U scheme. The CeIn3CeIn_3 compound were treated as nonmagnetic, ferromagnetic, and antiferromagnetic cases. Our result shows that the calculated EFG's are dominated at the 140Ce^{140}Ce site by the Ce-4f states. An approximately linear relation is intuited between the main component of the EFG's and total density of states (DOS) at Fermi level. The EFG's from our LDA+U calculations are in better agreement with experiment than previous EFG results, where appropriate correlations had not been taken into account among 4f-electrons. Our result indicates that correlations among 4f-electrons play an important role in this compound and must be taken into account

    Fermionic response from fractionalization in an insulating two-dimensional magnet

    Get PDF
    Conventionally ordered magnets possess bosonic elementary excitations, called magnons. By contrast, no magnetic insulators in more than one dimension are known whose excitations are not bosons but fermions. Theoretically, some quantum spin liquids (QSLs) -- new topological phases which can occur when quantum fluctuations preclude an ordered state -- are known to exhibit Majorana fermions as quasiparticles arising from fractionalization of spins. Alas, despite much searching, their experimental observation remains elusive. Here, we show that fermionic excitations are remarkably directly evident in experimental Raman scattering data across a broad energy and temperature range in the two-dimensional material α\alpha-RuCl3_3. This shows the importance of magnetic materials as hosts of Majorana fermions. In turn, this first systematic evaluation of the dynamics of a QSL at finite temperature emphasizes the role of excited states for detecting such exotic properties associated with otherwise hard-to-identify topological QSLs.Comment: 5 pages, 3 figure

    Ultrafast Photoinduced Formation of Metallic State in a Perovskite-type Manganite with Short Range Charge and Orbital Order

    Full text link
    Femtosecond reflection spectroscopy was performed on a perovskite-type manganite, Gd0.55Sr0.45MnO3, with the short-range charge and orbital order (CO/OO). Immediately after the photoirradiation, a large increase of the reflectivity was detected in the mid-infrared region. The optical conductivity spectrum under photoirradiation obtained from the Kramers-Kronig analyses of the reflectivity changes demonstrates a formation of a metallic state. This suggests that ferromagnetic spin arrangements occur within the time resolution (ca. 200 fs) through the double exchange interaction, resulting in an ultrafast CO/OO to FM switching.Comment: 4 figure
    • …
    corecore