11 research outputs found

    Numerical Modelling of Multicellular Spheroid Compression: Viscoelastic Fluid vs. Viscoelastic Solid

    No full text
    Parallel-plate compression of multicellular spheroids (MCSs) is a promising and popular technique to quantify the viscoelastic properties of living tissues. This work presents two different approaches to the simulation of the MCS compression based on viscoelastic solid and viscoelastic fluid models. The first one is the standard linear solid model implemented in ABAQUS/CAE. The second one is the new model for 3D viscoelastic free surface fluid flow, which combines the Oldroyd-B incompressible fluid model and the incompressible neo-Hookean solid model via incorporation of an additional elastic tensor and a dynamic equation for it. The simulation results indicate that either approach can be applied to model the MCS compression with reasonable accuracy. Future application of the viscoelastic free surface fluid model is the MCSs fusion highly-demanded in bioprinting

    MSCs’ conditioned media cytokine and growth factor profiles and their impact on macrophage polarization

    No full text
    Abstract Background There is a growing body of evidence that multipotent mesenchymal stromal cells’ (MSCs’) remarkable therapeutic potential is attributed not only to their differentiation and regenerative capacity, but also to the paracrine effect, underlying their immunomodulatory properties. MSCs’ secretome (i.e., cytokines, growth factors, and extracellular vesicles) is therefore increasingly discussed in the context of their ability to modulate inflammatory response and promote regeneration. There is evidence that 2D or 3D culturing conditions have an impact on the cells’ secretome, and here we aimed to compare the secretion of cytokines and growth factors in human MSCs from different sources cultured in 2D and 3D conditions and assess their effect on human macrophages polarization in vitro. Methods MSCs were derived from human adipose tissue, bone marrow, gingiva, placenta, and umbilical cord, cultured as monolayers or as cell spheroids. Their cytokine profiles were analyzed, and data standardization was carried out using a z-score. Human peripheral blood mononuclear cells-derived macrophages were then treated with umbilical cord-derived MSCs’ conditioned media and their effect on macrophages polarization was assessed. Results Our findings suggest that umbilical cord-derived MSCs’ conditioned media demonstrated the highest cytokine and growth factor levels and despite mostly pro-inflammatory cytokine profile were able to promote anti-inflammatory macrophage polarization. Conclusions Umbilical cord-derived MSCs’ conditioned media hold great potential for therapeutic use, demonstrating significant anti-inflammatory effect on human macrophages

    Modeling Hepatotropic Viral Infections: Cells vs. Animals

    No full text
    The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described

    Gender-Related Aspects in Osteoarthritis Development and Progression: A Review

    No full text
    Osteoarthritis (OA) is a common degenerative joint disease treated mostly symptomatically before approaching its definitive treatment, joint arthroplasty. The rapidly growing prevalence of OA highlights the urgent need for a more efficient treatment strategy and boosts research into the mechanisms of OA incidence and progression. As a multifactorial disease, many aspects have been investigated as contributors to OA onset and progression. Differences in gender appear to play a role in the natural history of the disease, since female sex is known to increase the susceptibility to its development. The aim of the present review is to investigate the cues associated with gender by analyzing various hormonal, anatomical, molecular, and biomechanical parameters, as well as their differences between sexes. Our findings reveal the possible implications of gender in OA onset and progression and provide evidence for gaps in the current state of art, thus suggesting future research directions

    Multicomponent Non-Woven Fibrous Mats with Balanced Processing and Functional Properties

    No full text
    The mimicking of the architectonics of native tissue, biodegradable non-woven fibrous mats is one of the most promising forms of scaffolding for tissue engineering. The key properties needed for their successful application in vivo, such as biodegradability, biocompatibility, morphology, mechanical properties, etc., rely on their composition and appropriate 3D structure. A multicomponent system based on biodegradable synthetic (polycaprolactone, oligo-/polylactide) and natural (chitosan, gelatin) polymers, providing the desired processing characteristics and functionality to non-woven mats fabricated via the electrospinning technique, was developed. The solid-state reactive blending of these components provided a one-step synthesis of amphiphilic graft copolymer with an ability to form stable ultra-fine dispersions in chlorinated solvents, which could be successfully used as casting solvents for the electrospinning technique. The synthesized graft copolymer was analyzed with the aim of fractional analysis, dynamic laser scattering, FTIR-spectroscopy and DSC. Casting solution characteristics, namely viscosity, surface tension, and electroconductivity, as well as electrospinning parameters, were studied and optimized. The morphology, chemical structure of the surface layer, mechanical properties and cytocompatibility were analyzed to confirm the appropriate functionality of the formed fibrous materials as scaffolds for tissue engineering

    Electrospinning vs. Electro-Assisted Solution Blow Spinning for Fabrication of Fibrous Scaffolds for Tissue Engineering

    No full text
    Biodegradable polymeric fibrous non-woven materials are widely used type of scaffolds for tissue engineering. Their morphology and properties could be controlled by composition and fabrication technology. This work is aimed at development of fibrous scaffolds from a multicomponent polymeric system containing biodegradable synthetic (polylactide, polycaprolactone) and natural (gelatin, chitosan) components using different methods of non-woven mats fabrication: electrospinning and electro-assisted solution blow spinning. The effect of the fabrication technique of the fibrous materials onto their morphology and properties, including the ability to support adhesion and growth of cells, was evaluated. The mats fabricated using electrospinning technology consist of randomly oriented monofilament fibers, while application of solution blow spinning gave a rise to chaotically arranged multifilament fibers. Cytocompatibility of all fabricated fibrous mats was confirmed using in vitro analysis of metabolic activity, proliferative capacity and morphology of NIH 3T3 cell line. Live/Dead assay revealed the formation of the highest number of cell–cell contacts in the case of multifilament sample formed by electro-assisted solution blow spinning technology

    Effective and Easy Techniques of Collagen Deposition onto Polylactide Films: DC-Discharge Plasma Treatment vs. Chemical Entrapment

    No full text
    Enhancement of cell adhesion and growth on surface of the biodegradable materials is one of the important tasks in development of materials for regenerative medicine. This work focuses on comparison of various methods of collagen coating deposition onto polylactide films, aiming to increase their biocompatibility with human mesenchymal stromal cells. The collagen deposition was realized using either preliminary plasma treatment of the polylactide films or pre-swelling in solvent mixture. These techniques were compared in terms of the effect on the surface’s chemical structure, morphology, hydrophilicity and ability to support adhesion and growth of human mesenchymal stromal cells

    Fabrication of Conductive Tissue Engineering Nanocomposite Films Based on Chitosan and Surfactant-Stabilized Graphene Dispersions

    No full text
    Chitosan (CS)/graphene nanocomposite films with tunable biomechanics, electroconductivity and biocompatibility using polyvinylpyrrolidone (PVP) and Pluronic F108 (Plu) as emulsion stabilizers for the purpose of conductive tissue engineering were successfully obtained. In order to obtain a composite solution, aqueous dispersions of multilayered graphene stabilized with Plu/PVP were supplied with CS at a ratio of CS to stabilizers of 2:1, respectively. Electroconductive films were obtained by the solution casting method. The electrical conductivity, mechanical properties and in vitro and in vivo biocompatibility of the resulting films were assessed in relation to the graphene concentration and stabilizer type and they were close to that of smooth muscle tissue. According to the results of the in vitro cytotoxicity analysis, the films did not release soluble cytotoxic components into the cell culture medium. The high adhesion of murine fibroblasts to the films indicated the absence of contact cytotoxicity. In subcutaneous implantation in Wistar rats, we found that stabilizers reduced the brittleness of the chitosan films and the inflammatory response

    EVs vs. EVs: MSCs and Tregs as a source of invisible possibilities

    No full text
    © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Extracellular vesicles (EVs) are produced by various cells and exist in most biological fluids. They play an important role in cell–cell signaling, immune response, and tumor metastasis, and also have theranostic potential. They deliver many functional biomolecules, including DNA, microRNAs (miRNA), messenger RNA (mRNA), long non-coding RNA (lncRNA), lipids, and proteins, thus affecting different physiological processes in target cells. Decreased immunogenicity compared to liposomes or viral vectors and the ability to cross through physiological barriers such as the blood–brain barrier make them an attractive and innovative option as diagnostic biomarkers and therapeutic carriers. Here, we highlighted two types of cells that can produce functional EVs, namely, mesenchymal stem/stromal cells (MSCs) and regulatory T cells (Tregs), discussing MSC/Treg-derived EV-based therapies for some specific diseases including acute respiratory distress syndrome (ARDS), autoimmune diseases, and cancer
    corecore