295 research outputs found

    Gestational diabetes mellitus, Vitamin D status and fetomaternal outcome

    Get PDF
    Background: Diabetes is the most common medical complication of pregnancy. Vitamin D deficiency which was initially considered only to influence bone metabolism, is now known to exert a wide spectrum of extra-skeletal effects. Vitamin D deficiency is closely associated with gestational diabetes mellitus, it also leads to adverse maternal and child outcome. Objective of this study was to compare the vitamin D levels in healthy pregnant women and women with gestational diabetes mellitus and to observe the feto-maternal outcome.Methods: This prospective study was carried out on 160 pregnant women between the age group 20-40 years attending the Obstetrics and Gynaecology department of JNMC, AMU, Aligarh from October 2016 to October 2018. Women were divided into group A- normal pregnant women and group B- women with GDM. Estimation of vitamin D was done in both the groups.Results: Mean vitamin D levels were lower in women with GDM as compared to normal pregnant women.Conclusions: Women with vitamin D deficiency have an increased risk of developing GDM and adverse feto maternal outcome as compared to those who had normal level of vitamin

    The DmsABC Sulfoxide Reductase Supports Virulence in Non-typeable Haemophilus influenzae.

    Full text link
    Although molybdenum-containing enzymes are well-established as having a key role in bacterial respiration, it is increasingly recognized that some may also support bacterial virulence. Here, we show that DmsABC, a putative dimethylsulfoxide (DMSO) reductase, is required for fitness of the respiratory pathogen Haemophilus influenzae (Hi) in different models of infection. Expression of the dmsABC operon increased with decreasing oxygen availability, but despite this, a Hi2019Δd msA strain did not show any defects in anaerobic growth on chemically defined medium (CDM), and viability was also unaffected. Although Hi2019Δd msA exhibited increased biofilm formation in vitro and greater resistance to hypochlorite killing compared to the isogenic wild-type strain, its survival in contact with primary human neutrophils, in infections of cultured tissue cells, or in a mouse model of lung infection was reduced compared to Hi2019WT. The tissue cell infection model revealed a two-fold decrease in intracellular survival, while in the mouse model of lung infection Hi2019Δd msA was strongly attenuated and below detection levels at 48 h post-inoculation. While Hi2019WT was recovered in approximately equal numbers from bronchoalveolar lavage fluid (BALF) and lung tissue, survival of Hi2019Δd msA was reduced in lung tissue compared to BALF samples, indicating that Hi2019Δd msA had reduced access to or survival in the intracellular niche. Our data clearly indicate for the first time a role for DmsABC in H. influenzae infection and that the conditions under which DmsABC is required in this bacterium are closely linked to interactions with the host

    Dynamic bacterial and viral response to an algal bloom at subzero temperatures

    Get PDF
    New evidence suggests that cold‐loving (psychrophilic) bacteria may be a dynamic component of the episodic bloom events of high‐latitude ecosystems. Here we report the results of an unusually early springtime study of pelagic microbial activity in the coastal Alaskan Arctic. Heterotrophic bacterioplankton clearly responded to an algal bloom by doubling cell size, increasing the fraction of actively respiring cells (up to an unprecedented 84% metabolically active using redox dye CTC), shifting substrate‐uptake capabilities from kinetic parameters better adapted to lower substrate concentrations to those more suited for higher concentrations, and more than doubling cell abundance. Community composition (determined by polymerase chain reaction/DGGE and nucleotide sequence analysis) also shifted over the bloom. Results support, for the first time with modern molecular methods, previous culture‐based observations of bacterial community succession during Arctic algal blooms and confirm that previously observed variability in pelagic microbial activity can be linked to changes in community structure. During early bloom stages, virioplankton and bacterial abundance were comparable, suggesting that mortality due to phage infection was low at that time. The virus‐to‐bacteria ratio (VBR) increased 10‐fold at the height of the bloom, however, suggesting an increased potential for bacterioplankton mortality resulting from viral infection. The peak in VBR coincided with observed shifts in both microbial activity and community structure. These early‐season data suggest that substrate and virioplankton interactions may control the active microbial carbon cycling of this region

    Can we decrease recurrence of OSSN using Mitomycin C

    Get PDF
    Aim: To study the effect of topical Mitomycin C on recurrence of OSSN after surgical excision. Materials and methods: This is a Randomized prospective interventional study conducted at Sarojini Devi Eye Hospital /Regional institute of Ophthalmology, Hyderabad. 54 clinically diagnosed cases of OSSN attending department of Oculoplasty between October 2012 to September 2014 were included in the study. 36 were males and 18 were females.Cases already treated were excluded from the study. These cases were randomly divided into two groups of 18 males and 9 females.Both the groups were treated by surgical excision of OSSN with 3mm margin of normal conjunctiva and cryo applied to the bare area by freeze thaw freeze technique. Group A was followed up every month for recurrence. Group B were given topical Mitomycin C 0.04% drops 4 times daily for 4days in a week with 3 days off. This constituteone cycle. Patients were kept for 4 cycles on this therapy. This group is also followed up every month for recurrence upto 2 years. Results: In group A 4 cases (14.8%) developed recurrence of tumor within one year. In group B there was no recurrence. Conclusion: Mitomycin C as adjuvant therapy after surgical excision of OSSN is effective in preventing recurrence. Key words: OSSN (Ocular surface squamous neoplasia), MMC (Mitomycin C), HIV (Human immuno-deficiency virus),HPV (Human papilloma virus).Â

    Patient Feedback Systems at the Primary Level of Health Care Centres in Bangladesh: A Mixed Methods Study

    Get PDF
    This paper documents, and reflects on key strengths and weaknesses of, existing patient feedback management systems at primary health care in Bangladesh and proposes key implications for future policy and practice. A mixed-method study was conducted in two Upazila (sub-district) Health Complexes (UHC) within one district in Bangladesh. It reports qualitative data from thematic analysis of in-depth interviews (n = 15) with key stakeholders; non-participant observations of feedback environment at UHCs; document review; and a stakeholder workshop. Patient feedback data from publicly available web portals were also analyzed. Multiple parallel patient feedback systems exist at health facilities. Key strengths across all systems included common goals of ensuring accountability and patient voice and high-level commitment. Common weaknesses included lack of documented processes, limited awareness of available channels among patients and a lack of documented actions following feedback. The findings helped to provide a few implications for future policy and practice on patient feedback management

    Perturbative expansion for master equation and it applications

    Full text link
    We construct generally applicable small-loss rate expansions for the density operator of an open system. Successive terms of those expansions yield characteristic loss rates for dissipation processes. Three applications are presented in order to give further insight into the context of those expansions. The first application, of a two-level atom coupling to a bosonic environment, shows the procedure and the advantage of the expansion, whereas the second application that consists of a single mode field in a cavity with linewidth κ\kappa due to partial transmission through one mirror illustrates a practical use of those expansions in quantum measurements, and the third one, for an atom coupled to modes of a lossy cavity shows the another use of the perturbative expansion.Comment: 10 pages, 1 figur

    Bioenergetic Phenotyping of DEN-Induced Hepatocellular Carcinoma Reveals a Link Between Adenylate Kinase Isoform Expression and Reduced Complex I-Supported Respiration

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common form of liver cancer worldwide. Increasing evidence suggests that mitochondria play a central role in malignant metabolic reprogramming in HCC, which may promote disease progression. To comprehensively evaluate the mitochondrial phenotype present in HCC, we applied a recently developed diagnostic workflow that combines high-resolution respirometry, fluorometry, and mitochondrial-targeted nLC-MS/MS proteomics to cell culture (AML12 and Hepa 1-6 cells) and diethylnitrosamine (DEN)-induced mouse models of HCC. Across both model systems, CI-linked respiration was significantly decreased in HCC compared to nontumor, though this did not alter ATP production rates. Interestingly, CI-linked respiration was found to be restored in DEN-induced tumor mitochondria through acute in vitro treatment with P1, P5-di(adenosine-5′) pentaphosphate (Ap5A), a broad inhibitor of adenylate kinases. Mass spectrometry-based proteomics revealed that DEN-induced tumor mitochondria had increased expression of adenylate kinase isoform 4 (AK4), which may account for this response to Ap5A. Tumor mitochondria also displayed a reduced ability to retain calcium and generate membrane potential across a physiological span of ATP demand states compared to DEN-treated nontumor or saline-treated liver mitochondria. We validated these findings in flash-frozen human primary HCC samples, which similarly displayed a decrease in mitochondrial respiratory capacity that disproportionately affected CI. Our findings support the utility of mitochondrial phenotyping in identifying novel regulatory mechanisms governing cancer bioenergetics

    Bioenergetic Phenotyping of DEN-Induced Hepatocellular Carcinoma Reveals a Link Between Adenylate Kinase Isoform Expression and Reduced Complex I-Supported Respiration

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common form of liver cancer worldwide. Increasing evidence suggests that mitochondria play a central role in malignant metabolic reprogramming in HCC, which may promote disease progression. To comprehensively evaluate the mitochondrial phenotype present in HCC, we applied a recently developed diagnostic workflow that combines high-resolution respirometry, fluorometry, and mitochondrial-targeted nLC-MS/MS proteomics to cell culture (AML12 and Hepa 1-6 cells) and diethylnitrosamine (DEN)-induced mouse models of HCC. Across both model systems, CI-linked respiration was significantly decreased in HCC compared to nontumor, though this did not alter ATP production rates. Interestingly, CI-linked respiration was found to be restored in DEN-induced tumor mitochondria through acute in vitro treatment with P1, P5-di(adenosine-5′) pentaphosphate (Ap5A), a broad inhibitor of adenylate kinases. Mass spectrometry-based proteomics revealed that DEN-induced tumor mitochondria had increased expression of adenylate kinase isoform 4 (AK4), which may account for this response to Ap5A. Tumor mitochondria also displayed a reduced ability to retain calcium and generate membrane potential across a physiological span of ATP demand states compared to DEN-treated nontumor or saline-treated liver mitochondria. We validated these findings in flash-frozen human primary HCC samples, which similarly displayed a decrease in mitochondrial respiratory capacity that disproportionately affected CI. Our findings support the utility of mitochondrial phenotyping in identifying novel regulatory mechanisms governing cancer bioenergetics

    Stem Cell Therapy with Overexpressed VEGF and PDGF Genes Improves Cardiac Function in a Rat Infarct Model

    Get PDF
    Therapeutic potential was evaluated in a rat model of myocardial infarction using nanofiber-expanded human cord blood derived hematopoietic stem cells (CD133+/CD34+) genetically modified with VEGF plus PDGF genes (VIP).Myocardial function was monitored every two weeks up to six weeks after therapy. Echocardiography revealed time dependent improvement of left ventricular function evaluated by M-mode, fractional shortening, anterior wall tissue velocity, wall motion score index, strain and strain rate in animals treated with VEGF plus PDGF overexpressed stem cells (VIP) compared to nanofiber expanded cells (Exp), freshly isolated cells (FCB) or media control (Media). Improvement observed was as follows: VIP>Exp> FCB>media. Similar trend was noticed in the exercise capacity of rats on a treadmill. These findings correlated with significantly increased neovascularization in ischemic tissue and markedly reduced infarct area in animals in the VIP group. Stem cells in addition to their usual homing sites such as lung, spleen, bone marrow and liver, also migrated to sites of myocardial ischemia. The improvement of cardiac function correlated with expression of heart tissue connexin 43, a gap junctional protein, and heart tissue angiogenesis related protein molecules like VEGF, pNOS3, NOS2 and GSK3. There was no evidence of upregulation in the molecules of oncogenic potential in genetically modified or other stem cell therapy groups.Regenerative therapy using nanofiber-expanded hematopoietic stem cells with overexpression of VEGF and PDGF has a favorable impact on the improvement of rat myocardial function accompanied by upregulation of tissue connexin 43 and pro-angiogenic molecules after infarction

    Relationship between the atomic inversion and Wigner function for multiphoton multimode Jaynes-Cummings model

    Full text link
    In this paper we consider multimode multiphoton Jaynes-Cummings model, which consists of a two-level atom, initially prepared in an excited atomic state, interacting with NN modes of electromagnetic field prepared in general pure quantum states. For this system we show that under certain conditions the evolution of the Wigner function at the phase space origin provides direct information on the corresponding atomic inversion. This relation is also valid even if the system includes Kerr-like nonlinearity, Stark shift effect, different types of the initial atomic state as well as moving atom. Furthermore, based on this fact we discuss for the single-mode case the possibility of detecting the atomic inversion by means of techniques similar to those used for Wigner function.Comment: 19 pages, 4 figure
    corecore