19 research outputs found

    Water quality analysis of selected schools of Kumaonregion,Uttarakhand, India

    No full text
    Water is a precious resource gifted by Mother Nature for the human being. With rapid growing population the pressure on our water resources is increasing and per capita availability of water resources is reducing day by day. The quality of surface and groundwater resources is also deteriorating because of increasing pollutant loads. The objective of this study consisted is to determinate some physiochemical properties of raw and end water samples from 9 identified intermediate (+2 level) schools of kumaon regions of Uttarakhandand their impact on human health is studied. It is observed that the uptake of water supply in almost all the schools is primarily suffering from bacteriological contamination of water. In addition to this, few schools are found to be contaminated with iron and fluorine Contamination. A wider approach is needed where water issues are looked at with the aim of reducing massive threat to health of students owing to contaminants present in drinking water higher than prescribed limits diseases and improving hygiene. This paper highlights strategies to ensure safe drinking water to the school children of Kumaon regions of Uttarakhand

    Alterations in soil bacterial community in relation to Spartina alterniflora Loisel. invasion chronosequence in the eastern Chinese coastal wetlands

    No full text
    In order to better understand the variations in soil bacterial community and associated drivers following plant invasion, we investigated changes in soil bacterial community along with 9-, 13-, 20- and 23-year-old Spartina alterniflora Loisel. (SA) invasion in comparison with bare flat (BF) in the eastern Chinese coastal wetlands, based on analyses of quantitative polymerase chain reaction (qPCR) and Illumina MiSeq DNA sequencing of 16S rRNA gene. The SA invasion significantly elevated soil bacterial abundance and diversity relative to BF, with the highest levels in 9-year-old SA soil, which gradually decreased with SA invasion from 9 to 23 years. The abundance of copiotrophic Proteobacteria, beta-proteobacteria, and Bacteroidetes generally diminished along with SA invasion chronosequence. While, changes in abundance of oligotrophic Chloroflexi, Acidobacteria, Nitrospirae and Planctomycetes exhibited opposite trends. Our data suggest that soil nutrient substrates, and physiochemical properties (soil pH and/or moisture) primarily drive the shifts in soil bacterial abundance, diversity, and community composition along with SA invasion chronosequence in the costal wetlands of eastern China. Overall, soil bacterial abundance and diversity peaked in 9-year-old SA community, with soil bacterial community composition changing from copiotrophic to oligotrophic groups along with SA invasion chronosequence

    Soil fungal communities vary with invasion by the exotic Spartina alternifolia Loisel. in coastal salt marshes of eastern China

    No full text
    Aims Soil fungal communities play a critical role in ecosystem carbon (C) and nitrogen (N) cycling. Although the effect of plant invasions on ecosystem C and N cycling is well established, its impact on soil fungal communities is not fully understood. The objective of this study was therefore to understand the variations in soil fungal communities as affected by plant invasion, and the mechanisms that drive these changes. Methods We examined the impacts of invasive Spartina alternifolia Loisel. (SA) on soil fungal abundance, diversity, community composition, trophic modes and functional groups in comparison with bare flat (BF) and native Suaeda salsa (Linn.) Pall. (SS), Scirpus mariqueter Tang et Wang (SM), and Phragmites australis (Cav.) Trin. ex Steud. (PA) communities in coastal salt marshes of eastern China, based on analyses of the quantitative polymerase chain reaction (qPCR) and Illumina MiSeq DNA sequences of fungal internal transcribed spacer (ITS) region. Results SA invasion increased the soil fungal abundance and diversity compared to BF, SS, SM, and PA soils. The increased soil fungal abundance and diversity were highly related to soil organic carbon (C) and nitrogen (N), water-soluble organic carbon (WSOC), litter C:N ratio, and root C:N ratio. Soil fungal community composition was shifted following SA invasion. Specifically, SA invasion significantly enhanced the relative abundance of Basidiomycota, and reduced the relative abundance of Ascomycota compared with BF, SS, SM, and PA soils. Additionally, SA invasion changed soil fungal trophic modes and functional groups. The relative abundance of saprotrophic fungi significantly increased, while the relative abundances of symbiotic and pathotrophic fungi decreased following SA invasion. Conclusions Our data revealed that SA invasion altered soil fungal abundance, diversity, community composition, trophic modes and functional groups, which were primarily driven by the quality and quantity of plant residues, soil nutrition substrates, as well as soil physicochemical properties. The changes in soil fungal communities, especially their trophic modes and functional groups following SA invasion would greatly affect soil C and N decomposition and accumulation with potential feedback on climate change

    Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient.

    No full text
    Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems

    Growth and physiological responses of submerged plant Vallisneria natans to water column ammonia nitrogen and sediment copper

    No full text
    Background. The decline of submerged plant populations due to high heavy metal (e.g., Cu) levels in sediments and ammonia nitrogen (ammonia-N) accumulation in the freshwater column has become a significant global problem. Previous studies have evaluated the effect of ammonia-N on submerged macrophytes, but few have focused on the influence of sediment Cu on submerged macrophytes and their combined effects. Methods. In this paper, we selected three levels of ammonia-N (0, 3, and 6 mg L−1) and sediment Cu (25.75 ± 6.02 as the control, 125.75 ± 6.02, and 225.75 ± 6.02 mg kg−1), to investigate the influence of sediment Cu and ammonia-N on submerged Vallisneria natans. We measured the relative growth rate (RGR), above- and below- ground biomass, chlorophyll, non-protein thiol (NP-SH), and free proline. Results and Discussion. The below-ground biomass of V. natans decreased with increasing Cu sediment levels, suggesting that excessive sediment Cu can result in significant damage to the root of V. natans. Similarly, the above-ground biomass significantly decreased with increasing ammonia-N concentrations, indicating that excessive water ammonia-N can cause significant toxicity to the leaf of V. natans. In addition, high ammonia-N levels place a greater stress on submerged plants than sediment Cu, which is indicated by the decline of RGR and chlorophyll, and the increase of (NP-SH) and free proline. Furthermore, high sediment Cu causes ammonia-N to impose greater injury on submerged plants, and higher sediment Cu levels (Cu ≥ 125.75 mg kg−1) led to the tolerant values of ammonia-N for V. natans decreasing from 6 to 3 mg L−1. This study suggests that high sediment Cu restricts the growth of plants and intensifies ammonia-N damage to V. natans

    Regional meteorological conditions and variations from 1999 to 2008 in Temperate Eurasian Steppe.

    No full text
    <p>(a) Spatial distribution of mean annual precipitation (MAP); (b) Spatial distribution of mean annual temperature (MAT); (c) temporal variations of MAP and MAT from 1999 to 2008 in different AI sub-regions: AR (red lines), SAR (blue lines), DSH (magenta lines) and HU (green lines).</p

    Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient - Fig 4

    No full text
    <p>Comparisons between simulated NPP and measured NPP from independent field study in Kazakh Steppe (KS), Inner Mongolia (IM) and Xingjiang (XJ): (a) the result of the original model (OR); (b) the result with revised model (RE).</p
    corecore