21 research outputs found

    Ancient Restoration in Roman Polychromy: Detecting Aesthetic Changes?

    Full text link
    peer reviewedFew instances of material evidence for ancient colour restorations have been documented over the last 20 years, during which time the scientific approach to the study of polychromy has been defined. This article presents eight new cases of ancient restoration of colour from the Roman Imperial Age. By combining observations in visible and UV light and video microscopy with a microstratigraphic approach, MA-X-ray fluorescence spectroscopy, and contextual archaeological data, we have observed evidence which could suggest an aesthetic change in the use of colour between the 2nd and 4th centuries CE: from polychrome and multitone effects to the use of monochromatic, flat, and uniform colour finishes

    Uncovering the clinical relevance of unclassified variants in DNA repair genes: a focus on BRCA negative Tunisian cancer families

    Get PDF
    Introduction: Recent advances in sequencing technologies have significantly increased our capability to acquire large amounts of genetic data. However, the clinical relevance of the generated data continues to be challenging particularly with the identification of Variants of Uncertain Significance (VUSs) whose pathogenicity remains unclear. In the current report, we aim to evaluate the clinical relevance and the pathogenicity of VUSs in DNA repair genes among Tunisian breast cancer families.Methods: A total of 67 unsolved breast cancer cases have been investigated. The pathogenicity of VUSs identified within 26 DNA repair genes was assessed using different in silico prediction tools including SIFT, PolyPhen2, Align-GVGD and VarSEAK. Effects on the 3D structure were evaluated using the stability predictor DynaMut and molecular dynamics simulation with NAMD. Family segregation analysis was also performed.Results: Among a total of 37 VUSs identified, 11 variants are likely deleterious affecting ATM, BLM, CHEK2, ERCC3, FANCC, FANCG, MSH2, PMS2 and RAD50 genes. The BLM variant, c.3254dupT, is novel and seems to be associated with increased risk of breast, endometrial and colon cancer. Moreover, c.6115G>A in ATM and c.592+3A>T in CHEK2 were of keen interest identified in families with multiple breast cancer cases and their familial cosegregation with disease has been also confirmed. In addition, functional in silico analyses revealed that the ATM variant may lead to protein immobilization and rigidification thus decreasing its activity. We have also shown that FANCC and FANCG variants may lead to protein destabilization and alteration of the structure compactness which may affect FANCC and FANCG protein activity.Conclusion: Our findings revealed that VUSs in DNA repair genes might be associated with increased cancer risk and highlight the need for variant reclassification for better disease management. This will help to improve the genetic diagnosis and therapeutic strategies of cancer patients not only in Tunisia but also in neighboring countries

    Virtual screening methods optimization and synthesis of active molecules for the treatment of autoimmune diseases.

    No full text
    Le criblage virtuel est de plus en plus utilisé dans les programmes de recherche de nouveaux principes actifs. L’augmentation considérable du nombre de structures résolues a favorisé le recours aux méthodes basées sur la structure de la cible comme le docking. Néanmoins, le choix de la/des structure(s) à utiliser demeure une question d’actualité. Pour tenter d'apporter une réponse, les résultats des études de docking menées sur la banque d’évaluation de référence (DUD) ont été analysés en prenant en compte les propriétés des sites de liaisons des structures de référence. D’intéressants résultats ont été obtenus mettant en évidence l'influence du volume et de l’ouverture des sites actifs sur les performances des méthodes. Ces critères de sélection simples et peu coûteux peuvent servir pour l’optimisation de protocoles de docking.Alors qu’aucune petite molécule inhibitrice du TNFα n’est actuellement commercialisée, l’application d’un protocole hiérarchique de criblage virtuel/in vitro, a permis d’identifier des touches actives. L’une d’elle, de squelette benzènesulfonamide a fait l’objet de pharmacomodulation en vue d’obtenir des analogues optimisés. Vingt molécules inédites ont été synthétisées et testées in vitro et certaines ont montré une activité intéressante. L’ensemble des données obtenues apportent des éléments importants de relation structure-activité. Ces résultats peuvent être exploités pour la conception de molécules innovantes ciblant le TNFα ce qui serait une avancée prometteuse pour le traitement des pathologies liées à une surproduction de cette cytokine comme la polyarthrite rhumatoïde et la maladie de Crohn.Virtual screening is widely used in drug discovery programs. The increasing number of resolved structures favored the use of Structure Based Virtual Ligand Screening methods like docking. Nevertheless, the choice of the structure(s) used as reference remains a topical issue when several are available. In this work, DUD database docking results were analyzed taking into account the properties of the query structure(s) binding sites. Interesting results were obtained highlighting the influence of active site volume and opening on methods performances. These simple and inexpensive “binding site properties-based” guidelines could be helpful to optimize future docking protocols.Despite important effort, no active small molecule targeting TNFα has been released so far. The use of a virtual/ in vitro hierarchical approach screening allowed identifying some active hits. Starting from one of them with a benzenesulfonamide structure, pharmacomodulation was achieved in order to obtain optimized analogs. Twenty new chemical derivatives with an original structure were synthesized and tested in vitro. Some of them exhibited an interesting activity. Moreover, data obtained provide important elements of structure-activity relationship. These results could constitute the basis for innovative small molecule TNFα-targeted therapeutics which would be a promising step for the treatment of diseases related to overproduction of this cytokine such as rheumatoid arthritis and Crohn's disease

    Unveiling the paint stratigraphy and technique of Roman African polychrome statues

    Full text link
    peer reviewedIf ancient written sources and the visual analysis of polychromies have recently revealed the complexity of the technique of painting on statues and their frequent restoration, the non-invasive punctual chemical analyses carried out do not allow one to access the chemical composition of the different paint layers. This paper presents the analysis of three statues from Roman Africa discussing the results obtained from this understudied territory and chronology. By combining visual observation (VIS, UVL), video microscopy and MA-XRF imaging, we propose here a non-invasive protocol to determine the chemical composition of the different paint layers. This allows one to unveil the complexity of the ‘know-how’ of a sculpture painter and sheds light on the evolution of the original appearance of the statues

    Multiple Structures for Virtual Ligand Screening: Defining Binding Site Properties-Based Criteria to Optimize the Selection of the Query

    No full text
    Structure based virtual ligand screening (SBVLS) methods are widely used in drug discovery programs. When several structures of the target are available, protocols based either on single structure docking or on ensemble docking can be used. The performance of the methods depends on the structure(s) used as a reference, whose choice requires retrospective enrichment studies on benchmarking databases which consume additional resources. In the present study, we have identified several trends in the properties of the binding sites of the structures that led to the optimal performance in retrospective SBVLS tests whatever the docking program used (Surflex-dock or ICM). By assessing their hydrophobicity and comparing their volume and opening, we show that the selection of optimal structures should be possible with no requirement of prior retrospective enrichment studies. If the mean binding site volume is lower than 350 A<sup>3</sup>, the structure with the smaller volume should be preferred. In the other cases, the structure with the largest binding site should be preferred. These optimal structures may be either selected for a single structure docking strategy or an ensemble docking strategy. When constructing an ensemble, the opening of the site might be an interesting criterion additionaly to its volume as the most closed structures should not be preferred in the large systems. These “binding site properties-based” guidelines could be helpful to optimize future prospective drug discovery protocols when several structures of the target are available

    Multiple Structures for Virtual Ligand Screening: Defining Binding Site Properties-Based Criteria to Optimize the Selection of the Query

    No full text
    Structure based virtual ligand screening (SBVLS) methods are widely used in drug discovery programs. When several structures of the target are available, protocols based either on single structure docking or on ensemble docking can be used. The performance of the methods depends on the structure(s) used as a reference, whose choice requires retrospective enrichment studies on benchmarking databases which consume additional resources. In the present study, we have identified several trends in the properties of the binding sites of the structures that led to the optimal performance in retrospective SBVLS tests whatever the docking program used (Surflex-dock or ICM). By assessing their hydrophobicity and comparing their volume and opening, we show that the selection of optimal structures should be possible with no requirement of prior retrospective enrichment studies. If the mean binding site volume is lower than 350 A<sup>3</sup>, the structure with the smaller volume should be preferred. In the other cases, the structure with the largest binding site should be preferred. These optimal structures may be either selected for a single structure docking strategy or an ensemble docking strategy. When constructing an ensemble, the opening of the site might be an interesting criterion additionaly to its volume as the most closed structures should not be preferred in the large systems. These “binding site properties-based” guidelines could be helpful to optimize future prospective drug discovery protocols when several structures of the target are available

    Multiple Structures for Virtual Ligand Screening: Defining Binding Site Properties-Based Criteria to Optimize the Selection of the Query

    No full text
    Structure based virtual ligand screening (SBVLS) methods are widely used in drug discovery programs. When several structures of the target are available, protocols based either on single structure docking or on ensemble docking can be used. The performance of the methods depends on the structure(s) used as a reference, whose choice requires retrospective enrichment studies on benchmarking databases which consume additional resources. In the present study, we have identified several trends in the properties of the binding sites of the structures that led to the optimal performance in retrospective SBVLS tests whatever the docking program used (Surflex-dock or ICM). By assessing their hydrophobicity and comparing their volume and opening, we show that the selection of optimal structures should be possible with no requirement of prior retrospective enrichment studies. If the mean binding site volume is lower than 350 A<sup>3</sup>, the structure with the smaller volume should be preferred. In the other cases, the structure with the largest binding site should be preferred. These optimal structures may be either selected for a single structure docking strategy or an ensemble docking strategy. When constructing an ensemble, the opening of the site might be an interesting criterion additionaly to its volume as the most closed structures should not be preferred in the large systems. These “binding site properties-based” guidelines could be helpful to optimize future prospective drug discovery protocols when several structures of the target are available

    Multiple Structures for Virtual Ligand Screening: Defining Binding Site Properties-Based Criteria to Optimize the Selection of the Query

    No full text
    Structure based virtual ligand screening (SBVLS) methods are widely used in drug discovery programs. When several structures of the target are available, protocols based either on single structure docking or on ensemble docking can be used. The performance of the methods depends on the structure(s) used as a reference, whose choice requires retrospective enrichment studies on benchmarking databases which consume additional resources. In the present study, we have identified several trends in the properties of the binding sites of the structures that led to the optimal performance in retrospective SBVLS tests whatever the docking program used (Surflex-dock or ICM). By assessing their hydrophobicity and comparing their volume and opening, we show that the selection of optimal structures should be possible with no requirement of prior retrospective enrichment studies. If the mean binding site volume is lower than 350 A<sup>3</sup>, the structure with the smaller volume should be preferred. In the other cases, the structure with the largest binding site should be preferred. These optimal structures may be either selected for a single structure docking strategy or an ensemble docking strategy. When constructing an ensemble, the opening of the site might be an interesting criterion additionaly to its volume as the most closed structures should not be preferred in the large systems. These “binding site properties-based” guidelines could be helpful to optimize future prospective drug discovery protocols when several structures of the target are available
    corecore