96 research outputs found
Priming Immunization with DNA Augments Immunogenicity of Recombinant Adenoviral Vectors for Both HIV-1 Specific Antibody and T-Cell Responses
Induction of HIV-1-specific T-cell responses relevant to diverse subtypes is a major goal of HIV vaccine development. Prime-boost regimens using heterologous gene-based vaccine vectors have induced potent, polyfunctional T cell responses in preclinical studies.The first opportunity to evaluate the immunogenicity of DNA priming followed by recombinant adenovirus serotype 5 (rAd5) boosting was as open-label rollover trials in subjects who had been enrolled in prior studies of HIV-1 specific DNA vaccines. All subjects underwent apheresis before and after rAd5 boosting to characterize in depth the T cell and antibody response induced by the heterologous DNA/rAd5 prime-boost combination.rAd5 boosting was well-tolerated with no serious adverse events. Compared to DNA or rAd5 vaccine alone, sequential DNA/rAd5 administration induced 7-fold higher magnitude Env-biased HIV-1-specific CD8(+) T-cell responses and 100-fold greater antibody titers measured by ELISA. There was no significant neutralizing antibody activity against primary isolates. Vaccine-elicited CD4(+) and CD8(+) T-cells expressed multiple functions and were predominantly long-term (CD127(+)) central or effector memory T cells and that persisted in blood for >6 months. Epitopes mapped in Gag and Env demonstrated partial cross-clade recognition.Heterologous prime-boost using vector-based gene delivery of vaccine antigens is a potent immunization strategy for inducing both antibody and T-cell responses.ClinicalTrials.gov NCT00102089, NCT00108654
Antibody maturation in women who acquire HIV infection while using antiretroviral pre-exposure prophylaxis.
CAPRISA, 2015.Abstract available in pdf
The medical student
The Medical Student was published from 1888-1921 by the students of Boston University School of Medicine
Decreased Pre-existing Ad5 Capsid and Ad35 Neutralizing Antibodies Increase HIV-1 Infection Risk in the Step Trial Independent of Vaccination
<div><h3>Background</h3><p>The Step trial raised the possibility that uncircumcised men with pre-existing Ad5 neutralizing antibodies carried an increased risk of HIV infection after vaccination. Thus, understanding Ad seropositivity in humans is important to the development of an AIDS vaccine. Here, we analyze the impact of different Ad5-specific neutralizing antibodies on immune function and clinical outcome.</p> <h3>Methods and Findings</h3><p>Ad seropositivity in the Step trial volunteers was analyzed using chimeric rAd5/35 vectors to characterize their specificity for Ad5 fiber and non-fiber external (capsid) proteins. Immune responses and HIV seropositivity were correlated with the specificity of Ad5-neutralizing antibodies. Neutralizing antibodies induced by the vaccine in Ad5 seronegative subjects were directed preferentially to Ad5 capsid proteins, although some fiber-neutralizing antibodies could be detected. Pre-vaccination Ad5 serostatus did not affect the capsid-directed response after three vaccinations. In contrast, anti-fiber antibody titers were significantly higher in volunteers who were Ad5 seropositive prior to vaccination. Those Ad5 seropositive subjects who generated anti-capsid responses showed a marked reduction in vaccine-induced CD8 responses. Unexpectedly, anti-vector immunity differed qualitatively in Ad5 seropositive participants who became HIV-1 infected compared to uninfected case controls; Ad5 seropositive participants who later acquired HIV had lower neutralizing antibodies to capsid. Moreover, Ad35 seropositivity was decreased in HIV-infected subjects compared with uninfected case controls, while seroprevalence for other serotypes including Ad14, Ad28 and Ad41 was similar in both groups.</p> <h3>Conclusions</h3><p>Together, these findings suggest that the case subjects were less immunologically responsive prior to infection. Subjects infected during the Step trial had qualitative differences in immunity that increased their risk of HIV-1 infection independent of vaccination.</p> </div
Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine
BACKGROUND: The safety and efficacy of the AZD1222 (ChAdOx1 nCoV-19) vaccine in a large, diverse population at increased risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United States, Chile, and Peru has not been known.
METHODS: In this ongoing, double-blind, randomized, placebo-controlled, phase 3 clinical trial, we investigated the safety, vaccine efficacy, and immunogenicity of two doses of AZD1222 as compared with placebo in preventing the onset of symptomatic and severe coronavirus disease 2019 (Covid-19) 15 days or more after the second dose in adults, including older adults, in the United States, Chile, and Peru.
RESULTS: A total of 32,451 participants underwent randomization, in a 2:1 ratio, to receive AZD1222 (21,635 participants) or placebo (10,816 participants). AZD1222 was safe, with low incidences of serious and medically attended adverse events and adverse events of special interest; the incidences were similar to those observed in the placebo group. Solicited local and systemic reactions were generally mild or moderate in both groups. Overall estimated vaccine efficacy was 74.0% (95% confidence interval [CI], 65.3 to 80.5; P
CONCLUSIONS: AZD1222 was safe and efficacious in preventing symptomatic and severe Covid-19 across diverse populations that included older adults. (Funded by AstraZeneca and others; ClinicalTrials.gov number, NCT04516746.)
Public clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV infection
Despite the pressing need for an AIDS vaccine, the determinants of protective immunity to HIV remain concealed within the complexity of adaptive immune responses. We dissected immunodominant virus-specific CD8+ T cell populations in Mamu-A*01+ rhesus macaques with primary SIV infection to elucidate the hallmarks of effective immunity at the level of individual constituent clonotypes, which were identified according to the expression of distinct T cell receptors (TCRs). The number of public clonotypes, defined as those that expressed identical TCR β-chain amino acid sequences and recurred in multiple individuals, contained within the acute phase CD8+ T cell population specific for the biologically constrained Gag CM9 (CTPYDINQM; residues 181–189) epitope correlated negatively with the virus load set point. This independent molecular signature of protection was confirmed in a prospective vaccine trial, in which clonotype engagement was governed by the nature of the antigen rather than the context of exposure and public clonotype usage was associated with enhanced recognition of epitope variants. Thus, the pattern of antigen-specific clonotype recruitment within a protective CD8+ T cell population is a prognostic indicator of vaccine efficacy and biological outcome in an AIDS virus infection
Virus inhibition activity of effector memory CD8+ T cells determines simian immunodeficiency virus load in vaccinated monkeys after vaccine breakthrough infection
The goal of an effective AIDS vaccine is to generate immunity that will prevent human immunodeficiency virus 1 (HIV-1) acquisition. Despite limited progress toward this goal, renewed optimism has followed the recent success of the RV144 vaccine trial in Thailand. However, the lack of complete protection in this trial suggests that breakthroughs, where infection occurs despite adequate vaccination, will be a reality for many vaccine candidates. We previously reported that neutralizing antibodies elicited by DNA prime-recombinant adenovirus serotype 5 (rAd5) boost vaccination with simian immunodeficiency virus strain mac239 (SIVmac239) Gag-Pol and Env provided protection against pathogenic SIVsmE660 acquisition after repeated mucosal challenge. Here, we report that SIV-specific CD8+ T cells elicited by that vaccine lowered both peak and set-point viral loads in macaques that became infected despite vaccination. These SIV-specific CD8+ T cells showed strong virus-inhibitory activity (VIA) and displayed an effector memory (EM) phenotype. VIA correlated with high levels of CD107a mobilization and perforin expression in SIV-specific CD8+ T cells. Remarkably, both the frequency and the number of Gag CM9-specific public clonotypes were strongly correlated with VIA mediated by EM CD8+ T cells. The ability to elicit such virus-specific EM CD8+ T cells might contribute substantially to an efficacious HIV/AIDS vaccine, even after breakthrough infection
Multivalent HA DNA Vaccination Protects against Highly Pathogenic H5N1 Avian Influenza Infection in Chickens and Mice
Sustained outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA) proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates
- …