4 research outputs found

    Promising Lead Compounds in the Development of Potential Clinical Drug Candidate for Drug-Resistant Tuberculosis

    No full text
    According to WHO report, globally about 10 million active tuberculosis cases, resulting in about 1.6 million deaths, further aggravated by drug-resistant tuberculosis and/or comorbidities with HIV and diabetes are present. Incomplete therapeutic regimen, meager dosing, and the capability of the latent and/or active state tubercular bacilli to abide and do survive against contemporary first-line and second line antitubercular drugs escalate the prevalence of drug-resistant tuberculosis. As a better understanding of tuberculosis, microanatomy has discovered an extended range of new promising antitubercular targets and diagnostic biomarkers. However, there are still no new approved antitubercular drugs of routine therapy for several decades, except for bedaquiline, delamanid, and pretomanid approved tentatively. Despite this, innovative methods are also urgently needed to find potential new antitubercular drug candidates, which potentially decimate both latent state and active state mycobacterium tuberculosis. To explore and identify the most potential antitubercular drug candidate among various reported compounds, we focused to highlight the promising lead derivatives of isoniazid, coumarin, griselimycin, and the antimicrobial peptides. The aim of the present review is to fascinate significant lead compounds in the development of potential clinical drug candidates that might be more precise and effective against drug-resistant tuberculosis, the world research looking for a long time

    Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosisMycobacterium\ tuberculosis

    Get PDF
    International audienceTo characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosisMycobacterium\ tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed-regression framework was followed by a phylogenetics-based test for independent mutations. In addition to mutations in established and recently described resistance-associated genes, novel mutations were discovered for resistance to cycloserine, ethionamide and para-aminosalicylic acid. The capacity to detect mutations associated with resistance to ethionamide, pyrazinamide, capreomycin, cycloserine and para-aminosalicylic acid was enhanced by inclusion of insertions and deletions. Odds ratios for mutations within candidate genes were found to reflect levels of resistance. New epistatic relationships between candidate drug-resistance-associated genes were identified. Findings also suggest the involvement of efflux pumps (drrAdrrA and Rv2688cRv2688c) in the emergence of resistance. This study will inform the design of new diagnostic tests and expedite the investigation of resistance and compensatory epistatic mechanisms

    Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis

    No full text
    corecore