51 research outputs found

    Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage.

    Get PDF
    Age-related macular degeneration (AMD) ranks third among the leading causes of visual impairment with a blindness prevalence rate of 8.7%. Despite several treatment regimens, such as anti-angiogenic drugs, laser therapy, and vitamin supplementation, being available for wet AMD, to date there are no FDA-approved therapies for dry AMD. Substantial evidence implicates mitochondrial damage and retinal pigment epithelium (RPE) cell death in the pathogenesis of AMD. However, the effects of AMD mitochondria and Humanin G (HNG), a more potent variant of the mitochondrial-derived peptide (MDP) Humanin, on retinal cell survival have not been elucidated. In this study, we characterized mitochondrial and cellular damage in transmitochondrial cybrid cell lines that contain identical nuclei but possess mitochondria from either AMD or age-matched normal (Older-normal (NL)) subjects. AMD cybrids showed (1) reduced levels of cell viability, lower mtDNA copy numbers, and downregulation of mitochondrial replication/transcription genes and antioxidant enzyme genes; and (2) elevated levels of genes related to apoptosis, autophagy and ER-stress along with increased mtDNA fragmentation and higher susceptibility to amyloid-β-induced toxicity compared to NL cybrids. In AMD cybrids, HNG protected the AMD mitochondria, reduced pro-apoptosis gene and protein levels, upregulated gp130 (a component of the HN receptor complex), and increased the protection against amyloid-β-induced damage. In summary, in cybrids, damaged AMD mitochondria mediate cell death that can be reversed by HNG treatment. Our results also provide evidence of Humanin playing a pivotal role in protecting cells with AMD mitochondria. In the future, it may be possible that AMD patient's blood samples containing damaged mitochondria may be useful as biomarkers for this condition. In conclusion, HNG may be a potential therapeutic target for treatment of dry AMD, a debilitating eye disease that currently has no available treatment. Further studies are needed to establish HNG as a viable mitochondria-targeting therapy for dry AMD

    Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome

    Get PDF
    © 2020, © 2020 The Author(s). Published with license by Taylor & Francis Group, LLC. Background: The Central Indian gut microbiome remains grossly understudied. Herein, we sought to investigate the burden of antimicrobial resistance and diarrheal diseases, particularly Clostridioides difficile, in rural-agricultural and urban populations in Central India, where there is widespread unregulated antibiotic use. We utilized shotgun metagenomics to comprehensively characterize the bacterial and viral fractions of the gut microbiome and their encoded functions in 105 participants. Results: We observed distinct rural-urban differences in bacterial and viral populations, with geography exhibiting a greater influence than diarrheal status. Clostridioides difficile disease was more commonly observed in urban subjects, and their microbiomes were enriched in metabolic pathways relating to the metabolism of industrial compounds and genes encoding resistance to 3rd generation cephalosporins and carbapenems. By linking phages present in the microbiome to their bacterial hosts through CRISPR spacers, phage variation could be directly related to shifts in bacterial populations, with the auxiliary metabolic potential of rural-associated phages enriched for carbon and amino acid energy metabolism. Conclusions: We report distinct differences in antimicrobial resistance gene profiles, enrichment of metabolic pathways and phage composition between rural and urban populations, as well as a higher burden of Clostridioides difficile disease in the urban population. Our results reveal that geography is the key driver of variation in urban and rural Indian microbiomes, with acute diarrheal disease, including C. difficile disease exerting a lesser impact. Future studies will be required to understand the potential role of dietary, cultural, and genetic factors in contributing to microbiome differences between rural and urban populations

    Metagenomics Reveals Impact of Geography and Acute Diarrhoeal Disease on the Central Indian Human Gut Microbiome

    Get PDF
    Background: The Central Indian gut microbiome remains grossly understudied. Herein, we sought to investigate the burden of antimicrobial resistance and diarrhoeal diseases, particularly Clostridioides difficile, in rural-agricultural and urban populations in Central India, where there is widespread unregulated antibiotic use. We utilised shotgun metagenomics to comprehensively characterise the bacterial and viral fractions of the gut microbiome and their encoded functions in 105 participants. Results: We observed distinct rural-urban differences in bacterial and viral populations, with geography exhibiting a greater influence than diarrhoeal status. Clostridioides difficile disease was more commonly observed in urban subjects, and their microbiomes were enriched in metabolic pathways relating to the metabolism of industrial compounds and genes encoding resistance to 3rd generation cephalosporins and carbapenems. By linking phages present in the microbiome to their bacterial hosts through CRISPR spacers, phage variation could be directly related to shifts in bacterial populations, with the auxiliary metabolic potential of rural-associated phages enriched for carbon and amino acid energy metabolism.Conclusions: We report distinct differences in antimicrobial resistance gene profiles, enrichment of metabolic pathways and phage composition between rural and urban populations, as well as a higher burden of Clostridioides difficile disease in the urban population. Our results reveal that geography is the key driver of variation in urban and rural Indian microbiomes, with acute diarrhoeal disease, including C. difficile disease exerting a lesser impact. Future studies will be required to understand the potential role of dietary, cultural and genetic factors in contributing to microbiome differences between rural and urban populations

    Effects of Mitochondrial-Derived Peptides (MDPs) on Mitochondrial and Cellular Health in AMD.

    No full text
    Substantive evidence demonstrates the contribution of mitochondrial dysfunction in the etiology and pathogenesis of Age-related Macular Degeneration (AMD). Recently, extensive characterization of Mitochondrial-Derived Peptides (MDPs) has revealed their cytoprotective role in several diseases, including AMD. Here we summarize the varied effects of MDPs on cellular and mitochondrial health, which establish the merit of MDPs as therapeutic targets for AMD. We argue that further research to delve into the mechanisms of action and delivery of MDPs may advance the field of AMD therapy

    Role of Resveratrol in Transmitochondrial AMD RPE Cells.

    No full text
    Resveratrol is a phytoalexin, stilbenoid compound with antioxidant properties attributable to its bioactive trans-resveratrol content. This study characterized the effects of over-the-counter (OTC) resveratrol nutritional supplements and a HPLC-purified resveratrol formulation, in human transmitochondrial age-related macular degeneration (AMD) retinal pigment epithelial (RPE) patient cell lines. These cell lines, which were created by fusing blood platelets obtained from dry and wet AMD patients with mitochondria-deficient (Rho0) ARPE-19 cells, had identical nuclei (derived from ARPE-19 cells) but different mitochondria that were derived from AMD patients. After resveratrol treatment, the levels of cell viability and reactive oxygen species production were measured. Results demonstrated that treatment with different resveratrol formulations improved cell viability and decreased reactive oxygen species generation in each AMD patient cell line. Although further studies are required to establish the cytoprotective potential of resveratrol under different physiological conditions, this novel study established the positive effects of OTC resveratrol supplements in macular degeneration patient cybrid cell lines in vitro

    Potential Therapeutic Candidates for Age-Related Macular Degeneration (AMD)

    No full text
    Aging contributes to the risk of development of ocular diseases including, but not limited to, Age-related Macular Degeneration (AMD) that is a leading cause of blindness in the United States as well as worldwide. Retinal aging, that contributes to AMD pathogenesis, is characterized by accumulation of drusen deposits, alteration in the composition of Bruch’s membrane and extracellular matrix, vascular inflammation and dysregulation, mitochondrial dysfunction, and accumulation of reactive oxygen species (ROS), and subsequent retinal pigment epithelium (RPE) cell senescence. Since there are limited options available for the prophylaxis and treatment of AMD, new therapeutic interventions are constantly being looked into to identify new therapeutic targets for AMD. This review article discusses the potential candidates for AMD therapy and their known mechanisms of cytoprotection in AMD. These target therapeutic candidates include APE/REF-1, MRZ-99030, Ciliary NeuroTrophic Factor (CNTF), RAP1 GTPase, Celecoxib, and SS-31/Elamipretide
    • …
    corecore