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Abstract 28 

Background: The Central Indian gut microbiome remains grossly understudied. Herein, we 29 

sought to investigate the burden of antimicrobial resistance and diarrhoeal diseases, particularly 30 

Clostridioides difficile, in rural-agricultural and urban populations in Central India, where there 31 

is widespread unregulated antibiotic use. We utilised shotgun metagenomics to 32 

comprehensively characterise the bacterial and viral fractions of the gut microbiome and their 33 

encoded functions in 105 participants.  34 

Results: We observed distinct rural-urban differences in bacterial and viral populations, with 35 

geography exhibiting a greater influence than diarrhoeal status. Clostridioides difficile disease 36 

was more commonly observed in urban subjects, and their microbiomes were enriched in 37 

metabolic pathways relating to the metabolism of industrial compounds and genes encoding 38 

resistance to 3rd generation cephalosporins and carbapenems. By linking phages present in the 39 

microbiome to their bacterial hosts through CRISPR spacers, phage variation could be directly 40 

related to shifts in bacterial populations, with the auxiliary metabolic potential of rural-41 

associated phages enriched for carbon and amino acid energy metabolism. 42 

Conclusions: We report distinct differences in antimicrobial resistance gene profiles, 43 

enrichment of metabolic pathways and phage composition between rural and urban 44 

populations, as well as a higher burden of Clostridioides difficile disease in the urban 45 

population. Our results reveal that geography is the key driver of variation in urban and rural 46 

Indian microbiomes, with acute diarrhoeal disease, including C. difficile disease exerting a 47 

lesser impact. Future studies will be required to understand the potential role of dietary, cultural 48 

and genetic factors in contributing to microbiome differences between rural and urban 49 

populations. 50 

 51 
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Introduction 57 

The human gut houses a complex microbial ecosystem referred to as the microbiome, which 58 

includes prokaryotic, eukaryotic and viral components. While the bacterial components of the 59 

microbiome have received considerable attention, comparatively little is known about the 60 

composition and physiological significance of human gut-associated bacteriophage 61 

populations, otherwise known as the phageome.1 Moreover, despite the growing global burden 62 

of antibiotic resistance to modern health care, very few studies have directly2,3 or indirectly, 63 

(through analysing urban sewage)4 examined the antibiotic resistomes of human faecal 64 

metagenomes. Such paucity of data prevents a complete understanding of the global burden 65 

and transmission of antimicrobial resistance (AMR), which is essential to support national and 66 

global priority setting, public health actions, and treatment decisions. Although recent years 67 

have seen an explosion of gut microbiome studies in rural pre-industrialised societies such as 68 

hunter-gatherer and other geographically diverse populations,5-10 little is known about 69 

microbial variability and its implications for health and disease in other underrepresented 70 

populations in South America, Africa, and regions in Asia, particularly India, where there is a 71 

scarcity of microbiome data in diarrhoeal and other populations.11-14 Diarrhoeal diseases are a 72 

major cause of morbidity and mortality in India, making identification of aetiological agents of 73 

utmost importance.15-18 74 

In India, there is tremendous opportunity to study highly diverse communities with varied 75 

geographic distribution, dietary habits and socioeconomic stratification. Some of these 76 

communities, including a large tribal population, remain dependent on hunting, agriculture and 77 

fishing with their own culture, tradition, dietary habits, language and genetic make-up. 78 

Recently, studies have begun to explore the Indian gut microbiome including that of the 79 

country’s scheduled tribes, principally using 16S rRNA gene amplicon sequencing methods to 80 

profile mainly gut bacterial diversity in rural and urban healthy populations11-14 with only a few 81 



5 

 

reports employing whole-genome shotgun metagenomic sequencing approaches.19-20 Whilst 82 

the majority of the aforementioned studies have analysed small population cohorts from 83 

Northern, Southern and Western Indian territories, there is a dearth of information 84 

characterising the gut microbiomes of Central Indian populations. Furthermore, little is known 85 

about the burden of Clostridioides difficile infection (CDI) in India, the leading worldwide 86 

cause of antibiotic-associated diarrhoea in hospitalised and community populations21-25 and its 87 

impact on Indian metagenomes. Profligate, unregulated antibiotic use and inappropriate 88 

prescribing suggest that CDI could be widespread in India, the world’s largest consumer of 89 

antibiotics. 26 90 

Via a pre-existing research partnership between the University of Nottingham and the Central 91 

India Institute of Medical Sciences (CIIMS), we were able to define the gut bacteriome, 92 

antibiotic resistome and virome in understudied rural and urban diarrhoeal and control 93 

populations in Central India. CIIMS has established multisite links with several hospital 94 

laboratories in the surrounding district of Nagpur, as well as a satellite laboratory in the 95 

Mahatma Gandhi Tribal hospital, Melghat, home to the Korku tribe of agriculturalists. We also 96 

concentrated on the pathogen Clostridiodies difficile and assessed its impact on the gut 97 

microbiome.  98 

Our results indicate that the rural habitants of Melghat show a Prevotella-dominant 99 

microbiome compared with the urban population of Nagpur, which is enriched with 100 

Bacteroides spp. Urbanisation is associated with functional enrichment of genes involved in 101 

xenobiotic and lipid metabolism. Although a core set of AMR genes are detectable in the Korku 102 

population, Nagpurian urbanites display a much higher burden of AMR overall. Viral diversity 103 

and composition is more influenced by geography than diarrhoeal status, with urban- and rural-104 

specific phage populations linked to bacterial hosts through CRISPR spacer identification. C. 105 
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difficile is principally detected in the urban and peri-urban exposed antibiotic populations, 106 

many of which carry AMR genes to virtually every class of antibiotic. 107 

Results 108 

Cohort Characteristics 109 

For our faecal metagenome study in which we were comparing urban vs rural microbiome 110 

profiles and assessing impact of diarrhoea and CDI, we analysed faecal samples collected from 111 

105 Central Indian participants comprising 35 rural (12 with diarrhoea) and 70 urban (46 with 112 

diarrhoea) participants from Melghat and Nagpur districts, respectively (Supplementary Table 113 

1 and Supplementary metadata). We selected an enriched set of faecal DNA samples derived 114 

from diarrhoeal samples that had previously tested positive in our aforementioned diagnostic 115 

C. difficile immunoassays for whole-genome shotgun sequencing (WGS). Of these diarrhoeal 116 

samples, 63% (29/46; urban) and 25% (3/12; rural) had tested positive for toxigenic C. difficile 117 

in the C. DIFF QUIK CHEK assay.  118 

Stool samples received centrally by CIIMS were collected at recruitment over 13 months from 119 

the 1st of March 2017 to 30th April 2018 from participants resident at 48 sites in Nagpur district 120 

(Figure 1) and 19 participating rural villages in Melghat (Supplementary Figure 1), 3 of which 121 

were very small villages and are not marked on Google maps. The mean duration of diarrhoea 122 

for urban diarrhoeal group (n=34) was 5.2 days (SD 2.7 days). The mean age of participants 123 

was greater for urban (42 years) versus rural (35.6 years) participants, p=0.01, with a lower 124 

percentage of females represented in the urban and rural control groups compared to the 125 

diarrhoeal groups which did not reach statistical significance. Mean body mass index (BMI) 126 

[weight (kg)/height (m) squared] was also higher in the urban (21.8) compared with rural (19.3) 127 

participants group, p<0.0001). It was noteworthy that one third of participants in the urban non-128 

diarrhoeal control group had received antibiotics in the three months prior to recruitment, 129 
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although none were taking antibiotics when sampled. The vast majority of participant housing 130 

in the rural areas was deemed to be of poor quality based on a lack of piped water supply (water 131 

tank only), no access to latrines, limited electricity supply (<18 hours/day) and small living 132 

space (Supplementary Figure 2), whereas just over half of the urban cohort resided within 133 

housing of good quality, as reflected in access to Corporation tap water, longer duration 134 

electricity supply (>18 hours/day) and larger living quarters. A higher proportion of rural 135 

participants kept domestic animals within their living quarters (cattle, goats, chickens) 136 

compared with their urban counterparts. 137 

Overall, significant confounding associations were observed between geographic location and 138 

several other study variables. Consequently, we focussed our analyses primarily on geographic 139 

location, with the understanding this accounts for both subject specific and environmental 140 

factors. 141 

 142 

 143 

Rural subjects have a distinct microbiome when compared with urban subjects 144 

Principal coordinates analysis was performed on a Bray-Curtis Dissimilarity matrix of the 145 

species-level taxonomic profiles (n=105), excluding viral taxa. Urban (n=70) and rural (n=35) 146 

subjects separated well along the 1st principal component (Figure 2A) but diarrhoeal status 147 

(control n=47 vs. diarrhoeal n=58) did not appear to have as much influence on sample 148 

clustering. This observation was confirmed by PERMANOVA which indicated that geographic 149 

location (urban vs rural) accounted for 7.7% of the variation between samples (F=8.67, 150 

p=0.001) while diarrhoeal status accounted for a further 1.7% (F=1.94, p=0.028). Including C. 151 

difficile toxin status and recent antibiotic exposure in the model accounted for an additional 152 

2.1% (F=2.48, p=0.005) and 1.4% (F=1.62, p=0.09) of variation respectively. Considering 153 
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other demographic variables of interest, including age, gender, BMI, housing quality and 154 

animal ownership when combined with geography, only age (2.1%, F=2.41, p=0.008) 155 

contributed significantly to the residual variation explained, reflecting the strong association of 156 

these variables with study location. 157 

Sample alpha diversity was calculated using the Inverse Simpson Index for the taxonomic 158 

abundances at species level and compared between control and diarrhoeal subjects from either 159 

an urban or rural location (Figure 2B). Rural diarrhoeal subjects had the lowest diversity (n=12, 160 

mean 3.66 +/- 2.5) which was significantly lower than urban control subjects who had the 161 

highest diversity (n=24, 6.75 +/- 3.5, p.corr=0.05). 162 

Individual taxonomic profiles showed a high level of heterogeneity at genus level both within 163 

and between study groups (Figure 2C). Overall, profiles from urban areas tended to be 164 

dominated by Bacteroides spp. with 25/70 urban subjects having a relative abundance of 165 

greater than 30 % compared to only 3/35 rural subjects (Chi-squared test; p=0.006). Conversely 166 

in rural subjects, Prevotella spp. were predominant, particularly in control subjects (15/35 rural 167 

subjects with > 30 % Prevotella spp. compared to 9/70 urban subjects, Chi-squared test; 168 

p=0.001).  169 

Analysing the species-level taxonomic abundances using generalized linear models yielded 26 170 

taxa which differed significantly between rural and urban control subjects, and 16 taxa which 171 

differed significantly between control and diarrhoeal subjects (Figure 2D, Supplementary 172 

Tables 2& 3). A direct comparison was also made between diarrhoeal subjects testing positive 173 

and negative for C. difficile toxin, yielding 18 taxa which differed significantly (Supplementary 174 

Table 4). 175 

 176 

 177 
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Antimicrobial resistance is more prevalent in urban areas 178 

Antimicrobial resistance gene profiles were compiled from the faecal metagenomes of all 179 

subjects in the study using ARIBA. Individual gene counts were aggregated by antibiotic class 180 

to identify broad trends between subjects according to geographic location and antibiotic 181 

exposure (Figure 3A). Genes conferring resistance to beta-lactam antibiotics, tetracyclines and 182 

macrolides, lincosamides and streptogramins (MLS) were identified in virtually all subjects. 183 

Average resistance gene counts aggregated by class were compared between subjects from 184 

rural and urban areas, regardless of diarrhoeal status or antibiotic exposure, indicating that 185 

counts for 13 of the 18 classes were significantly higher in urban subjects (Mann Whitney U 186 

test, FDR corrected, Figure 3A). Grouping subjects by geography, diarrhoeal status and 187 

antibiotic exposure revealed a subset of rural subjects whose faecal metagenomes had 188 

resistance to the least number of different antibiotic classes, while some of the urban subjects 189 

were carrying antibiotic resistance genes to virtually every class of antibiotic (Figure 3A). This 190 

included resistance to glycopeptides (predominantly vanA genes) and two classes from the 191 

World Health Organisation essential medicines reserve group; fosfomycin and lipopeptides 192 

(daptomycin). Compared with other antibiotic classes, metronidazole resistance was rare and 193 

only detected in a single subject. 194 

Beta lactam antibiotics are widely used in clinical practice and resistance to broad spectrum 195 

beta lactam antibiotics, particularly carbapenems, is of significant public health concern. 196 

Individual beta lactam gene clusters derived from the MegaRes antibiotic database were 197 

analysed in more detail by subject to identify differences in average gene counts between rural 198 

and urban subjects (Figure 3B) with those differing significantly shown in more detail in Figure 199 

4C (Mann Whitney U test, FDR corrected). Resistance mechanisms included production of 200 

beta-lactamases (Ambler class A to D), alteration of penicillin binding proteins (PBPs) and 201 

mutation of outer membrane porins in Gram negative bacteria.  202 
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Of the gene clusters with increased counts in urban subjects, many encoded clinically relevant 203 

beta-lactamases, including extended spectrum beta-lactamases (CTX) and carbapenemases 204 

(NDM). Prevalence of key beta-lactamase genes was analysed by comparing the number of 205 

subjects in which the gene cluster was detected in their metagenome. The CFX gene cluster, 206 

encoding an Ambler class A beta-lactamase, was the most prevalent cluster detected, identified 207 

in 94 of 105 subjects. The prevalence of several clinically relevant beta lactam gene clusters 208 

was higher in urban subjects when compared to rural subjects, including CTX, NDM and OXA 209 

(Supplementary Table 5). Gene clusters encoding the other clinically important 210 

carbapenemases, KPC, VIM and IMP, were not detected in any of the subjects.  211 

 212 

Microbiota variations between groups are predicted to drive functional shifts in 213 

metabolic pathways 214 

Differentially abundant metabolic pathways between urban and rural subjects and their 215 

predicted taxonomic contributions were identified with FishTaco (Figure 4). A total of 28 216 

pathways were enriched in urban subjects, with the majority (24/28) in the following 217 

categories; xenobiotics biodegradation and metabolism (16/28), lipid metabolism (6/28) and 218 

amino acid metabolism (2/28). Several Bacteroides spp., Parabacteroides distasonis, 219 

Klebsiella pneumoniae and E. coli were identified as potential contributors to the enrichment 220 

of these pathways in urban subjects. 221 

Of the 33 pathways enriched in rural subjects, 13/33 related to metabolism of amino acids, 4/33 222 

to carbohydrate metabolism and 4/33 to metabolism of cofactors and vitamins. Prevotella 223 

copri, Prevotella stercorea and several members of the Firmicutes phylum, including 224 

Ruminococcus bromii, Eubacterium rectale and Faecalibacterium prausnitzii, were identified 225 
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as potentially important contributors to the enrichment of these pathways in rural subjects, 226 

counterbalanced by the presence of Parabacteroides distasonis in urban subjects. 227 

As the contribution of each taxa to the functional shifts had been inferred based on a 228 

comparison of taxonomic abundance to gene abundance across all samples, we sought further 229 

evidence based on the genomic content of related reference genomes to corroborate these 230 

findings. KEGG orthology copy number data for the top 10 urban and rural enriched metabolic 231 

pathways were obtained for 4 representative rural and urban genomes (Supplementary Tables 232 

6 & 7. Several pathways relating to xenobiotics biodegradation and metabolism enriched in 233 

urban subjects were encoded at high copy number by the Klebsiella pneumoniae and E. coli 234 

reference genomes but were absent or encoded at low copy number by representative rural 235 

species, particularly Prevotella copri. For the rural enriched pathways, most were encoded at 236 

high copy number across all 8 representative rural and urban species, consistent with the more 237 

balanced FishTaco profiles for these pathways. Although copy number by species for rural 238 

enriched pathways tended to be slightly higher for the urban representative species, their 239 

overall contribution may be offset by their relative abundance as a proportion of the total 240 

microbiota per subject.  241 

Although no differences were identified in pathway enrichment between C. difficile positive 242 

and negative diarrhoeal subjects, 54 pathways were enriched in control non-diarrhoeal subjects 243 

when compared with diarrheal subjects. These included multiple pathway categories relating 244 

to amino acid metabolism (14/54), carbohydrate metabolism (10/54), cofactors and vitamins 245 

(8/54) and energy metabolism (6/54).  246 

 247 

Indian faecal viromes differ by geographic location 248 
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A total of 8,746 non-redundant viral sequences were detected in the whole community 249 

metagenomic sequencing data for 105 Indian faecal samples. These viruses group into 1,344 250 

Viral Clusters (VCs), which are concordant with viral genera.22 Network visualisation of the 251 

shared protein clusters between VCs shows the majority of Indian faecal viruses identified are 252 

connected to previously described Caudovirales (Figure 5A). Several Microviridae, 253 

Inoviridae, and archaeal viruses of the Rudiviridae and Bicaudaviridae families, were also 254 

detected. Unknown viruses were observed which did not share protein clusters with previously 255 

characterised viruses. 256 

As viruses were identified in whole community metagenomic data, and not specifically targeted 257 

using viral isolation and sequencing protocols, it is expected that rare viruses are poorly 258 

represented in the final Indian faecal virome. Therefore, for diversity comparisons between 259 

cohorts, the Inverse Simpson’s index was employed as it is less sensitive to rare taxa. No 260 

difference in viral diversity was observed between diarrhoeal and control subjects within 261 

specific residence locations. However, a difference in the Inverse Simpson’s index was 262 

detected between the rural and urban cohorts (rural mean 58.00 +/- 37.53 versus urban mean 263 

46.01 +/- 25.36, p adj=0.002; Figure 5B). 264 

The unique composition of Indian faecal viromes were assessed through PCoA. The greatest 265 

variance is attributable to geographical residence, with 7.8% of the data explained by urban or 266 

rural location (F=8.67, p=0.001; Figure 5C). The interaction of geographical residence and the 267 

diarrhoeal status of subjects accounts for a further 2.1% of the observed viral differences 268 

(F=2.36, p=0.012). Amongst the urban and rural Indian cohorts that were suffering from 269 

diarrhoea, the C. difficile status of individuals only accounted for an additional 0.6% of the 270 

PCoA variation (F=0.63, p=0.897). The impact of antibiotic usage with the geographical 271 

residence or diarrhoeal status of subject explains 1.0% and 1.4% of the calculated differences, 272 

respectively (F=1.13, p=0.315 and F=1.64, p=0.071, respectively). Additional recorded 273 
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variables were tested for their effect on the Indian faecal virome. However, in combination, 274 

age, gender, BMI, and housing condition did not make a significant contribution to the variance 275 

explained, only accounting for 1.3% of the Indian faecal virome dissimilarities (F=1.50, 276 

p=0.09). 277 

Specific VCs were strongly associated with distinct geographical locations and diarrhoeal 278 

status. The relative abundance differences observed for the 50 VCs that had the greatest fold 279 

change by geographical location demonstrates that specific VCs are also associated with 280 

controls (Figure 5D). Particular VCs associated with urban residing subjects were also clearly 281 

associated with diarrhoea. Amongst individuals experiencing diarrhoea, differences in the 282 

virome composition were noted between CDT positive and negative faecal samples 283 

(Supplementary Figure 3). 284 

CRISPR spacers were used to link VCs to their potential bacterial hosts. The relative abundance 285 

of VCs and the number of CRISPR spacers against specific VCs demonstrates that urban 286 

subjects contain a greater abundance of phages targeting Bacteroides, Parabacteroides, 287 

Bifidobacterium and Escherichia spp., while there are trends towards more Eubacterium and 288 

Prevotella-infecting VCs amongst rural-residing individuals (Figure 5E). The enterotypes of 289 

Indian microbiomes (n=105) are dominated by Bacteroides (n=50), Prevotella (n=34), and 290 

Escherichia (n=21). When Indian faecal viromes are analysed in the context of microbiome 291 

enterotypes, Bacteroides-, Prevotella-, and Escherichia-infecting phages are prevalent in the 292 

corresponding microbial enterotypes (Supplementary Figures 4A & B). Similarly, a trend 293 

towards more crAss-like phages predicted to infect Prevotella spp. are observed in rural 294 

samples (Supplementary Figure 4B; Kruskal-Wallis test, p-value 0.059). 295 

 296 

Virome-associated auxiliary metabolic functions 297 
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While the Indian faecal virome composition analysis was conducted on VCs present in 2 or 298 

more individuals, all viral-associated auxiliary metabolic functions were assessed on VCs 299 

present in 10 or more individuals. These criteria were implemented in order to focus on the 300 

functions associated with the most abundant Indian faecal viruses. There were 723 VCs shared 301 

by 10 or more individuals. Of these VCs, the majority (419/723 VCs, 57.95%) are detectable 302 

amongst both rural and urban habiting individuals (Figure 6A). However, urban and rural-303 

specific VCs were also observed (240 and 64 VCs, respectively). 304 

The functions associated with the largest representative sequence of each VC was predicted. 305 

As expected for virome analyses, the most abundant functional predictions corresponded to 306 

eggNOG category S: ‘Function unknown’ and category L: ‘Replication, recombination, and 307 

repair’ (Figure 6C). The presence/absence similarity between VC-encoded functions associated 308 

with an individual’s virome were compared using PCoA. The variation of the virome-309 

associated auxiliary metabolic functions were better explained by geography than diarrheal 310 

status (7.1% versus 2.2%, p=0.001 and 0.025, respectively; Figure 6B). 311 

In order to assess the energy harvesting metabolic potential or urban and rural viral 312 

communities, eggNOG categories E and G (‘Amino acid transport and metabolism’, and 313 

‘Carbohydrate transport and metabolism’, respectively) were investigated. The rurally 314 

abundant VCs encode at statistically higher frequency genes involved in amino acid and 315 

carbohydrate transport and metabolism (Figure 6D-E). 316 

 317 

Discussion 318 

The composition of the gut microbiome in the context of health and to a much lesser extent, 319 

disease, in Indian populations is not well understood. This study is the first to utilise shotgun 320 

metagenomics sequencing to comprehensively characterise the gut bacteriome, resistome and 321 
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virome of rural and urban diarrhoeal and control populations without diarrhoea living in two 322 

geographically and culturally distinct regions of Central India, Nagpur and Melghat. Although 323 

there is very limited data on the incidence and epidemiology of CDI in India as a whole, a 324 

handful of reports mainly conducted in hospitalised patients, indicate detection rates in the 325 

range of 6-15.7%. 19-21 In our faecal metagenome study in which we also sought to characterise 326 

the impact of C. difficile, we selected an enriched set of faecal DNA samples derived from 327 

diarrhoeal samples testing positive in diagnostic C. difficile immunoassays for whole-genome 328 

shotgun sequencing (WGS). As such, the C. difficile toxin positivity rates presented herein, 329 

may not reflect true prevalence rates in the selected study populations. Nevertheless, our results 330 

suggest that CDI is an emerging but as yet under-recognised healthcare-associated infection 331 

and is associated mainly with urbanisation and antibiotic exposure. These findings highlight 332 

the need to enhance awareness of and testing of subjects with diarrhoea for C. difficile in India, 333 

particularly in high-risk individuals with recent or ongoing antibiotic exposure or 334 

hospitalisation. 335 

The taxonomic profiles revealed geographically distinct gut microbiota signatures. As 336 

compared with the urban population of Nagpur district, the rural villagers of the Korku tribe in 337 

Melghat were observed to have a significantly higher abundance of Prevotella spp, particularly 338 

in the control subjects, and an underrepresentation of common members of urban-industrial gut 339 

microbiomes (e.g., Bacteroides spp.). Prevotella has been reported as the most prevalent genus 340 

associated with the healthy Indian population in previous microbiome studies11,14,19-20 and has 341 

also been observed as the dominant genus in Mongolian, Amerindian and Malawian groups,11 342 

indicating the occurrence of Enterotype 2 as proposed by Arumugam et al., 2011.28 Prevotella 343 

predominance may reflect the diet of the Korku tribe, which is rich in carbohydrates and dietary 344 

fibres. In contrast, Nagpur samples were associated with enterotype-1, which were driven by 345 

Bacteroides and may be again explained by this population’s dietary habits, which typically 346 
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consists of rice, with some meat and fish. Interestingly, multivariate analysis revealed that 347 

geographic location actually accounted for most of the variation in gut microbial communities 348 

with diarrhoeal status, including C. difficile toxin positivity and antibiotics contributing to a 349 

lesser extent. Consistent with recent findings from a large-scale clinical microbiome study 350 

which surveyed over 7000 individuals across 14 districts within the Guangdong province in 351 

China,29 inter-individual differences in the composition of the gut microbiome could be 352 

overwhelmingly explained by an individual’s geographic location. Nevertheless, it is also now 353 

accepted that ethnicity strongly selects for specific taxa, although it is unclear what aspects of 354 

ethnicity, whether culturally related activities or genetics, underlie its observed association with 355 

the microbiota.29,30  356 

The misuse and overuse of antibiotics in veterinary, agricultural and clinical applications is 357 

rampant in India, fuelling antimicrobial resistance. Inadequate public health infrastructure, 358 

poor sanitation, and infection control practices in the primary healthcare system increase 359 

demand for parallel markets and further contribute to the overuse of antibiotics. Antibiotic 360 

resistance is also being driven environmentally by untreated urban waste, sewage effluent from 361 

Indian hospitals,31 and pharmaceutical pollution of waterways.32 Indiscriminate use of beta-362 

lactam antibiotics in both the community setting and hospitals has given rise to the presence of 363 

antibiotic-resistant Enterobacteriaceae in healthy human faecal samples in North India.33 Our 364 

faecal resistome data has corroborated recent shotgun metagenomics data indicating the 365 

widespread presence of AMR genes in virtually all subjects irrespective of geographic location 366 

and is consistent with that reported in Chinese, Hazda hunter-gatherer and resource-limited 367 

Latin American faecal microbiotas.2,3,7 However, although genes conferring resistance to beta-368 

lactam antibiotics, tetracyclines and macrolides, lincosamides and streptogramins (MLS) 369 

appeared to be common throughput Nagpur district and Melghat habitats, rural subjects from 370 

the Korku tribe generally reported lower exposure to antibiotics and thus displayed a lower 371 
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abundance of other AMR genes compared with the urban Nagpur participants. In this latter 372 

group, those individuals with C. difficile infection on antibiotics were carrying AMR genes to 373 

virtually every antibiotic class.  374 

The co-occurrence of pathogens and AMR genes for critically important antibiotics offers 375 

increased opportunities for unwanted horizontal gene transfer events.31 Perhaps of most 376 

concern, the Ambler class B metallo-beta-lactamase NDM, which was detected in only 1 of 35 377 

rural subjects but was found in 32/70 urban subjects, and also supports clinical data detecting 378 

carbapenemase producing pathogens from Mumbai,34 and another recent study showing that 379 

NDM-1 is also common in hospital effluent from Delhi.35 Our findings suggest that improving 380 

sanitation, health, and education as part of the UN Sustainable Development Goals as well as 381 

the consideration of new legislative measures for curtailing environmental pollution may be 382 

effective strategies for limiting the burden of AMR in India and globally. 383 

Analysis of taxon-level shift contribution profiles in the Nagpurian population suggested that 384 

distinct bacteria such as Bacteroides spp., Parabacteorides distasonis, Klebsiella pneumonia 385 

and E. coli may potentially possess xenobiotic, lipid and amino acid metabolising capabilities. 386 

In support of these observations, Parabacteroides distasonis has recently been shown to 387 

transform bile acids which have lipid-digestive and absorptive functions, and enhances the 388 

level of succinate in the gut. Bacteroides spp. are also dominant in amino acid metabolism in 389 

the large intestine.36 In addition, different species of Klebsiella appear to have substantial 390 

potential for the biodegradation of diverse pollutants, such as halogenated aromatic and 391 

nitroaromatic compounds.37 This result is in line with previous evidence, which suggest that 392 

individuals belonging to different geographies have microbiota with distinct xenobiotic 393 

metabolising capacities.38 Our analysis of taxa associated shifts in metabolic function could 394 

also reflect diet and/or the higher exposure of these urban habitants to industrial/agricultural 395 

chemicals such as pesticides, fertilisers, antibiotics and other pharmaceuticals. 396 
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Rural subjects tended to have a higher abundance of Prevotella spp. (and certain members of 397 

the Firmicutes phylum including Roseuburia spp. and Eubacterium spp.) and showed 398 

enrichment in pathways comprising amino acid and carbohydrate metabolism and metabolism 399 

of cofactors and vitamins. The FishTaco analysis indicated a potential association between 400 

these. These observations are consistent with previous evidence indicating that Prevotella spp. 401 

show capacity to digest complex carbohydrates and display enzymatic potential to break down 402 

cellulose and xylan from foods.39 A specific strain, Prevotella copri, is one of the strongest 403 

driver species associated with branched chain amino acid biosynthesis in the gut and insulin 404 

resistance,40 and vitamin A and β-carotene from bananas and mangos can stimulate the growth 405 

of both P. copri and P. stercorea.41 Furthermore, the faecal metagenomes of the rural subjects 406 

were also enriched in genes associated with thiamine metabolism. It is feasible that thiamine 407 

deficiency, which is likely to be prevalent in the Korku, may be leading to a host driven 408 

compensatory increase in thiamine producing microbiota in the gut. 409 

Ecological studies of macro-organisms consistently demonstrate the importance of predators 410 

within environments. Nonetheless, the majority of human microbiome studies only consider its 411 

bacterial fraction and do not concomitantly study this ecosystem’s predators, viruses. In this 412 

study, we identified and analysed 8,746 viral sequences grouped into 1,344 putative genera 413 

termed Viral Clusters (VCs). Similar to previous studies of the human faecal virome, the vast 414 

majority of viruses detected are tailed phages of the order Caudovirales that infect bacteria 415 

(Figure 5A). 416 

Phage predation has been proposed to modulate bacterial populations within ecosystems 417 

through various predator-prey interactions.42-43 The faecal virome diversity of Central India 418 

rural inhabitants was greater than their urban counterparts (Figure 5B). A similar observation 419 

is described by Rampelli et al (2017), whereby two hunter-gatherer communities also had a 420 

higher faecal viral diversity compared to two Western society cohorts.44 421 
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The changes in the relative abundance of VCs demonstrates specific viruses are strongly 422 

associated with urban and rural communities, and also with diarrhoeal status (Figure 5D). The 423 

identification of VCs’ host bacteria through CRISPR spacers is in agreement with the bacterial 424 

analysis of Indian faecal microbiomes. The relative abundance of viruses targeting Bacteroides 425 

and Parabacteroides is greater amongst urban residing individuals, while viruses targeting 426 

Eubacterium and Prevotella are more abundant amongst rural inhabitants (Figure 5E). 427 

The abundance of unique proteins associated with VC representative sequences demonstrates 428 

the majority of functions are shared between urban and rural viruses (Figure 6A), with 429 

geography best explaining the observed differences (Figure 6B). The most abundant functional 430 

annotations associated with Indian faecal viromes correspond to ‘function unknown’ and 431 

‘replication, recombination and repair’ (Figure 6C). However, recent studies have highlighted 432 

the auxiliary metabolic potential of phages. Oceanic virome studies have demonstrated phages 433 

enhance the fitness of infected bacteria through augmenting their photosynthetic capability and 434 

energy production.42,45 Therefore, we investigated the energy harvesting potential encoded by 435 

human gut viruses. Specific pathways for amino acid and carbohydrate transport and 436 

metabolism are more abundant in rural VCs (Figure 6D & E). The increased abundance in rural 437 

associated VCs may be attributed to a narrower repertoire of encoded functions. 438 

There were several limitations to this study. Co-morbidity data were unknown and we were 439 

unable to capture BMIs for all participants (see Supplementary metadata). Detailed dietary 440 

information was not available using a standard FFQ approach. Further, the control population 441 

comprised mainly hospitalized patients without diarrhoea and thus do not represent healthy 442 

controls. It was also not possible to achieve identical sampling strategies across both rural and 443 

urban populations, particularly in view of lack of hospital facilities in Melghat. Due to lack of 444 

diagnostic facilities, we were unable to determine the etiological cause of acute diarrhoea or in 445 

the case of C. difficile positive samples, undertake further strain characterisation studies. 446 
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Finally, due to limitations related to specimen collection and preparation, we were unable to 447 

assess other components of the microbiome, including RNA viruses and intestinal parasites. 448 

Conclusions 449 

Here we report the most comprehensive study to date that has simultaneously examined the 450 

enteric bacteriome, DNA virome and antibiotic resistome in divergent populations in Central 451 

India, a region of the world that has been grossly understudied. Together, these data suggest 452 

that not all rural traditional societies display a healthy gut microbiota as exemplified by a lack 453 

of significant difference in bacterial diversity between our rural and urban cohorts and the 454 

presence of a core set of AMR genes. Our findings will help assess progress towards meeting 455 

the goals of global and national action plans to tackle AMR and the burden of infectious 456 

diarrhoea in India, including CDI. These results may also be useful in laying the foundations 457 

for implementing culturally acceptable One Health-inspired interventions to improve 458 

healthcare outcomes in this region of the world. 459 

 460 

Materials and Methods 461 

Experimental design and aim of study 462 

The main aim of this observational cohort study was to use shotgun metagenomics to 463 

characterise the gut bacteriome, DNA virome and antibiotic resistome of two highly divergent 464 

populations in Central India; rural agriculturalists in Melghat and an urban population in 465 

Nagpur. We also sought to investigate comparative differences in microbiome profiles in 466 

subjects with and without diarrhoea, including the impact of CDI.  467 

 468 

Human participants 469 
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Inclusion and Exclusion Criteria 470 

During participant selection, inclusion criteria were (i) adults aged from 18 to 70 years who 471 

could provide written or thumb-print acknowledged informed consent, (ii) HIV, hepatitis B or 472 

C negative, and (iii) not pregnant or breast-feeding.  473 

For the diarrhoeal group, a presumptive diagnosis of infective diarrhoea was defined as 3 or 474 

more loose stools in a 24-hour period accompanied by other gastrointestinal symptoms such as 475 

nausea, vomiting, abdominal cramps, tenesmus, bloody stools, or fever (oral temperature 476 

≥38oC). All subjects in the C. difficile-infected group had diarrhoea and a positive stool C. 477 

difficile (enzyme immunoassay) for toxin. 478 

The exclusion criteria for this group were (i) any individual with a known non-infectious cause 479 

of diarrhoea such as inflammatory bowel disease, (ii) those unable to provide a stool sample, 480 

(iii) or if the sample is formed stool. For the non-diarrhoeal control group, the exclusion criteria 481 

were (i) presence of acute diarrhoea at the time of or within 2 weeks of recruitment or (ii) those 482 

unable to provide a stool sample. It was acknowledged that such individuals could be recruited 483 

from the in- or outpatient population and could have been exposed to antibiotics in the recent 484 

past (within 3 months of recruitment), although ideally not at the time of recruitment.  485 

Immunosuppression was defined as those with cancer, were receiving chemotherapy or on 486 

prednisolone (>5mg/d), immunomodulators (azathioprine, methotrexate, calcineurin inhibitor) 487 

or biologics.  488 

Potential participants from Nagpur were identified with the assistance of project fellows at the 489 

Central India Institute of Medical Sciences (CIIMS) who approached all consecutive cases of  490 

diarrhoea presenting to CIIMS as either an in-or outpatient. Similarly, all non-diarrhoeal cases 491 

were recruited to this study via the assistance of inpatient or outpatient clinical teams who 492 

closely liaised with the project fellows at CIIMS. All rural participants who provided stool 493 
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samples in this study were directly recruited by community village health care workers trained 494 

by MAHAN Trust, which is a non-governmental organisation providing medical expertise to 495 

the disparate tribal population of the Melghat region in their own homes. 496 

 497 

 498 

Human Geography - Nagpur 499 

Nagpur is the third largest city of the Indian state of Maharashtra and the 13th largest city by 500 

population (2.5M) in India. It is located at the exact centre of the Indian peninsula (zero 501 

milestone) and enjoys a tropical savannah climate where temperatures can reach in excess of 502 

48 oC in the summer months. Hinduism is the main religion followed closely by Buddhism and 503 

Islam, with smaller contributions from Christianity, Jainism and Sikhism. 504 

Nagpur is an emerging metropolis attracting significant commercial inward investment and is 505 

a major education hub in Central India. It is also home to the Central Indian Institute of Medical 506 

Sciences (CIIMS). Nagpur was declared open defecation free in January 2018 and is one of the 507 

cleanest and most livable cities in India, as a leader in healthcare, green spaces and public 508 

transportation. The majority of households have good drinking water and sanitation facilities, 509 

and use clean fuel for cooking. 510 

 511 

Human Geography - Melghat 512 

Melghat Tiger Reserve, with its diverse flora and fauna, is located in Amaravati district of 513 

Maharashtra and is home to approximately 250,000 members of the Korku tribe spread across 514 

two talukas, Dharni and Chikaldhara and 300 villages, and extends across 4,000 square km. By 515 

road, it is approximately 250 km from Nagpur.  516 
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All rural Melghat subjects within the Melghat Tiger Reserve of Maharashtra identify as 517 

members of the Korku Scheduled Tribe and practice Hinduism mixed with ancestral worship. 518 

The Korku are an Adivasi ethnic group, speak Korku dialect, and are primarily an 519 

agriculturalist community of low socioeconomic status, high rates of illiteracy and malnutrition 520 

and possess poor access to medical and educational facilities. They live in small huts typically 521 

made of mud, grass and bamboo frames which lack an electricity or running water supply or 522 

proper sanitation systems and possess unique and distinct cultural knowledge, beliefs, and 523 

customs.  524 

 525 

Metadata collection (Metagenome study) 526 

Site-specific project coordinators were assigned to review health records form each participant. 527 

Basic demographic details including age, gender, geographic location, hospitalisation 528 

exposure, antibiotic usage during and before (within 3 months) of study recruitment, and C. 529 

difficile (GDH positive, toxin-positive) detection rates were recorded for urban and rural 530 

diarrhoeal and control participants. 531 

In addition, BMI, immunosuppression status, and environmental details: type and location of 532 

home dwelling, number in family, drinking water supply, hygiene practices and number and 533 

type of domestic animals were also recorded for all participants. A description of the dietary 534 

information for the sampled cohorts is presented in the Supplementary methods. 535 

 536 

Faecal Sample Collection and Storage 537 

All specimens were anonymised and assigned a study code number linked to participant 538 

demographic details. Human faecal samples were collected from urban participants with and 539 
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without diarrhoea that were either in- or outpatients from the Central Indian Institute of Medical 540 

Sciences (CIIMS), Nagpur or from other hospitals within a 20 km radius of CIIMS. Similarly, 541 

faecal samples were also collected from participants with and without diarrhoea in Melghat 542 

with the assistance of research fellows based at the Mahatma Gandhi Tribal Hospital, which 543 

hosts a CIIMS satellite laboratory and other neighbouring hospitals within Melghat. Suitable 544 

recruits were identified by the research fellows who interacted daily with village healthcare 545 

workers to facilitate participant recruitment and sample collection. Up to two samples (3-5 546 

grams each) were collected in UV sterilised dry plastic containers at the time of recruitment 547 

from each participant and placed in a cool box. As per the standard operating procedures, all 548 

stool specimens were stored at 4oC immediately after collection to avoid enzymatic degradation 549 

prior to detection of toxigenic C. difficile and genomic DNA extraction which were performed 550 

within 24 hours of sample collection. 551 

 552 

Detection of Clostridioides difficile GDH antigen and free toxin in diarrheal stool samples 553 

All diarrhoeal samples in the metagenome study (58/105) were tested for Clostridioides 554 

difficile infection (detection of glutamate dehydrogenase antigen and toxins A/B) using the C. 555 

DIFF QUIK CHEK COMPLETE-enzyme immunoassay (QCC; TechLab, Blacksburg, VA, 556 

USA) in accordance with the manufacturers’ instructions, including the use of appropriate 557 

controls as specified in the package insert. Briefly, ~25 ml of stool sample was added to a tube 558 

containing the diluent and conjugate and the mixture was transferred to the device sample well. 559 

After incubation for 15 min at room temperature, the wash buffer followed by the substrate 560 

were added to the reaction window. The results were read after 10 min. The GDH antigen 561 

and/or toxins were reported as positive if a clear visible band was seen on the antigen and toxin 562 
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side of the device display window, respectively, confirming the presence of toxigenic C. 563 

difficile as per manufacturer guidelines. 564 

 565 

 566 

Faecal DNA extraction 567 

DNA was extracted from 1 to 1.5g of feces and homogenised in lysis buffer (Tris HCl, EDTA, 568 

NaCl and SDS). The content was centrifuged at 7,000 x g for 10 min. The supernatant was then 569 

transferred to a 1.5mL tube containing a mixture of Isopropanol and Sodium acetate (5M) and 570 

incubated at -20oC for 30 min. Following removal of the supernatant the pellet was dried for 571 

about an hour. The pellet was suspended in 1X Tris EDTA buffer (pH 8) and incubated at 65oC 572 

for 15 min. An approximate equal volume (0.5- 0.7 ml) of Phenol: Chloroform- Isoamyl 573 

alcohol (24:1) was added, mixed thoroughly and centrifuged for 10 min at 12,000 x g. The 574 

aqueous viscous supernatant was carefully transferred to a new 1.5mL tube. An equal volume 575 

of Chloroform-Isoamyl alcohol (1:1) was added, followed by centrifugation for 10 min at 576 

12,000 x g. The supernatant was mixed with 0.6x volume of Isopropanol to aid precipitation. 577 

The precipitated nucleic acids were washed with 75% ethanol, dried and re-suspended in 50μL 578 

of TE buffer.  579 

 580 

Whole-Genome Shotgun (WGS) Sequencing 581 

Sequencing was carried out by Source Biosciences (Nottingham, U.K.). High quality genomic 582 

DNA was quantified using Qubit Broad Range (Invitrogen, U.K.) and prepared for Illumina 583 

paired end sequencing following the TruSeq DNA Nano manufacturers protocol (Rev D, June 584 

2015) (Illumina Inc, San Diego, U.S.A.). The DNA was sequenced using a standard HiSeq 585 
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4000 150bp PE flowcell. Raw data has been submitted to the European Nucleotide Archive 586 

under the accession number https://www.ncbi.nlm.nih.gov/bioproject/PRJNA564397 587 

Generation of taxonomic, resistome and functional profiles from metagenomic shotgun data 588 

Raw Fastq files (average 13,410,735 reads per sample) were assessed for quality using 589 

skewer,46 trimming adaptor reads and regions of quality below a phred of 30. The filtered reads 590 

(average 10,635,653 reads per sample) were then assessed for taxonomic assignments using 591 

Metaphlan2 47 and for the presence of antimicrobial resistance genes using ARIBA48 with the 592 

MegaRes database.49 593 

Functional analysis was performed using MOCAT2 (v2.1.3).50 Briefly, trimmed and filtered 594 

reads were assembled into contigs with SOAPaligner (v2.21). These contigs are initially 595 

corrected for indels and chimeric reads using BWA (v0.7.5a-r16) and screened against the 596 

human hg19 reference to filter out reads which originated from the host using USEARCH 597 

(v5/v6). Genes were predicted using Prodigal (v2.60). Single copy marker genes are extracted 598 

using fetchMG (v1.0) and clustered using CD-HIT (v4.6). The gene catalogues were annotated 599 

using DIAMOND (v0.7.9.58) against multiple functional databases including eggNOG51 and 600 

KEGG.52 The abundance of genes annotated to specific KEGG orthologs (KO) was determined 601 

using the insert mm dist among unique norm setting in MOCAT2, normalising by read length 602 

and sequencing depth and allowing for multiple mappers. 603 

 604 

Analysis of taxonomic contributions to functional shifts 605 

Functional shifts between groups and predicted taxonomic contributions were calculated using 606 

the FishTaco package,53 taking the species-level taxonomic table produced by Metaphlan2 and 607 

the normalised KO abundance table from MOCAT2 as inputs. Only 49 taxa which exceeded a 608 

minimum proportional abundance of greater than 0.1 in any single sample were included in the 609 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA564397
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final model. Enriched pathways were identified using the Wilcoxon rank sum test at FDR 610 

corrected p<0.05. Taxonomic contributions were predicted by de novo inference in FishTaco, 611 

inferring genomic content through a permutation-based approach and performing a total of 50 612 

permutations per differentially abundant pathway. 613 

For comparison of gene copy number for enriched metabolic pathways, KO gene copy numbers 614 

for 8 gut-associated annotated reference genomes were obtained from the Integrated Microbial 615 

Genomes and Microbiomes (IMG) database54 as follows; Prevotella stercorea DSM 18206 616 

(IMG: 2513237318), Prevotella copri CB7 DSM 18205 (IMG: 2562617166), Eubacterium 617 

rectale DSM 17629 (IMG: 650377936), Ruminococcus bromii L2-63 (IMG: 650377966), 618 

Escherichia coli UM147 (IMG: 2728369554), Klebsiella pneumoniae YH43 (IMG: 619 

2687453226), Bacteroides vulgatus mpk (IMG: 2687453192), Parabacteroides distasonis 620 

2b7A (IMG: 2660238380). KO gene copy numbers associated with each enriched metabolic 621 

pathway were aggregated to yield overall pathway gene counts. 622 

 623 

Detecting viruses in whole community metagenomic shotgun data 624 

Sequencing reads were processed using Trimmomatic (version 0.36),55 to remove Illumina 625 

adaptors and prune sequences where the Phred score dropped below 30 across a 4bp sliding 626 

window. All surviving reads less than 70bp were discarded. Fastq reads were assessed pre- and 627 

post-processing using fastqc56. Both the paired and unpaired, forward and reverse reads, from 628 

samples were assembled individually using metaSPAdes (version 3.11.1)57. Only contigs 629 

greater than 1,000bp were examined further. 630 

Two approaches were employed to find viruses within whole community metagenomic 631 

assemblies. A standard reference-based similarity search was performed to detect sequence 632 

relatedness to known viruses, while a reference-independent approach was undertaken by 633 
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searching for sequences which encode a high density of viral proteins. For the reference-based 634 

search, nucleotide sequences were queried locally using BLAST (version 2.6.0+)58 against the 635 

viral RefSeq database (version 89; E-value 1E-10),59 the complete Reference Viral Database 636 

(C-RVDB version 14.0; E-value 1E-05),60 and 249 crAss-like phages previously described as 637 

the human gut’s most abundant viruses (E-value 1E-05).61 638 

For the reference-independent approach, proteins for all contigs were predicted using Prodigal 639 

(version 2.6.3)62 with the ‘meta’ option enabled for small contigs and Shine-Dalgarno training 640 

bypassed. Proteins were subsequently queried against the prokaryote Viral Orthologous 641 

Groups database (pVOGs)63 using HMMER (version 3.1b2),64 with a minimum score 642 

requirement of 15. Putative reference-independent discovered viruses needed to fulfil three 643 

basic requirements: (i) ≥1.5kb, (ii) encode 2 distinct proteins with similarity to 2 unique 644 

pVOGs, and (iii) encode ≥2 pVOGs per 10kb-equivalent genome length. Additional stringent 645 

dynamic filtering was applied to contigs based on their actual genome length. For contigs <5kb, 646 

it was required that there were at least ≥5 distinct pVOG hits; contigs ≥5kb and <10kb, ≥6 647 

pVOG hits; contigs ≥10kb and <20kb, ≥7 pVOG hits; contigs ≥20kb and <40kb, ≥8 pVOG 648 

hits; contigs ≥40kb and <60kb, 9 pVOG hits; and contigs ≥60kb, 10 pVOG hits. 649 

All putative viral contigs detected using the reference-dependent and -independent methods 650 

were pooled and made non-redundant as follows: following a BLASTn all-v-all, the larger of 651 

two contigs were retained when the blast identity and coverage between two sequences 652 

exceeded 90%. Subsequently, any putative viruses encoding a ribosomal protein (BLASTp, E-653 

value 1E-10) was removed from further analysis. This was performed for stringency despite 654 

recent research showing specific viruses can encode ribosomal proteins65. In addition, any 655 

contig encoding a protein with similarity to all available Pfam sequences (version 32.0) of 656 

plasmid replication proteins PF01051, PF01446, PF01719, PF04796, PF05732, and PF06970, 657 

were removed (HMMER, score 15). 658 
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Viral contigs were grouped into Viral Clusters (VCs) using vContact2 (version 0.9.8)27, 659 

implemented through the CyVerse Discovery Environment. Protein clusters were identified 660 

amongst VCs using default settings (Diamond, E-value 0.0001), and with the inclusion of 661 

known viruses (Bacterial and Archaeal Viral RefSeq 85, with ICTV and NCBI taxonomy). 662 

Following vContact2, only viral clusters that contain viral sequences from two or more of the 663 

study’s complete cohort (n=105) were analysed further. This was designed to remove singleton 664 

and spurious viral sequences that may be transiently associated with diet, but are not abundant 665 

or stable components of the faecal microbiome. The final Indian faecal virome was visualised 666 

as a network through Cytoscape (version 3.7.1),66 with viral sequences as nodes and shared 667 

protein clusters as edges. The edge distance between connected viruses is calculated by 668 

Cytoscape as their ‘interaction’. 669 

 670 

Discerning differences in virome diversity and abundance 671 

Quality filtered reads, both paired and unpaired, were mapped onto the final Indian faecal 672 

virome using bowtie2 in ‘end-to-end’ mode (version 2.3.4.1).67 The read alignment outputs 673 

were converted to sorted bam files through samtools (version 1.7).68 The abundance and 674 

breadth of coverage of reads mapping to each contig was determined using the bedtools 675 

coverage function (version 2.26.0). 69 Subsequently, in order to determine if a viral sequence 676 

was indeed present in a faecal virome, a breadth of coverage filtering was applied. This was 677 

designed to remove viruses where potentially 100s of reads could map onto a single conserved 678 

region. Therefore, for viral sequences ≤5kb, 75% of the genome needed to be covered by 679 

aligned reads; sequences >5kb and ≤50kb, 50% of the genome needed to be covered; and 680 

>50kb, 25% of the genome needed to be covered. 681 
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In addition to 105 faecal metagenomes, two negative control samples (water) were sequenced. 682 

While these samples contributed no contigs to the final Indian faecal virome, the breadth of 683 

coverage of sequencing reads from these samples was used to remove potential contaminant 684 

sequences. Any viral sequence, from any sample, which ‘passed’ the breadth of coverage 685 

filtering using reads derived from either water sample were removed from further analysis. 686 

Any viral sequence from a faecal microbiome sample which failed the breadth of coverage 687 

filtering was recorded as zero reads, while if the filtering step was passed, the observed number 688 

of reads aligned were used to populate the read count matrix. Due to differences in sequencing 689 

depth between samples, the read count matrix was normalised per sample using the DESeq2 690 

ratio of means method.70 The reads aligned to individual viral sequences were aggregated by 691 

their vContact2 determined VCs. DESeq2 was subsequently used to calculate the VC changes 692 

between cohorts. The normalised VC read count matrix was used to determine the diversity 693 

and statistical differences observed between Indian faecal microbiome cohorts (see ‘Statistical 694 

Analyses’ below). 695 

 696 

Determining phage-host pairs and viral encoded functions 697 

CRISPR spacers from bacterial contig assemblies were predicted using PILER-CR (version 698 

1.06). 71 Putative CRISPR spacer predictions <20bp and >100bp were discarded. The CRISPR 699 

spacers were queried locally using BLASTn against all individual viral sequences which 700 

formed the Indian faecal virome VCs. Due to the use of short nucleotide sequences, only 701 

CRISPR spacers with an E-value ≤0.001 and ≤1 mismatch were considered as significant. In 702 

order to determine the taxonomy of the original assembled bacterial contigs, or the pre-703 

assembled contigs from the Pasolli et al. (2019) study,72 contig kmer MinHash sketches were 704 

queried against JGI taxonomy server using the BBMap sendsketch function (version 38.44).73 705 
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The bacterial enterotypes of Indian microbiomes were calculated using the Jensen-Shannon 706 

divergence (JSD) to cluster the samples, followed by partitioning around medoids (PAM) to 707 

cluster the abundance profiles. 28 708 

The functions associated with Indian faecal viruses were determined using eggNOG-mapper 709 

v1 (online submission portal) using the eggNOG 4.5.1 database.51 For each VC, the largest 710 

viral sequence was chosen as a representative of that VC. In order to avoid the confounding 711 

effect of viral abundance fluctuations within the faecal microbiome, the relative abundance of 712 

VCs observed at the specific sampling time-point were not taken into consideration. Only the 713 

overall presence-absence and abundance of viral-encoded functions were considered. The 714 

similarity between virome-encoded functions, with respect to presence-absence, were assessed 715 

through PCoA using the Jaccard index. The abundance of specific metabolic genes were 716 

compared between cohorts, with statistical difference determined by the Mann-Whitney U test 717 

with Bonferroni correction using the ‘ggpubr’ compare means function in R. 718 

 719 

Statistical Analyses and Graphic Generation  720 

All statistical analyses were conducted in R (64-bit, version 3.6.0; Foundation for Statistical 721 

Computing, Vienna). The package ‘vegan’ was used for measures of taxonomic diversity 722 

including alpha diversity (Inverse Simpson Index) and beta diversity (Principal Coordinates 723 

Analysis with Bray Curtis Dissimilarity and Jaccard Similarity). Differences in alpha diversity 724 

between study groups was assessed by ANOVA with Tukey’s honest significance test. The 725 

contribution of categorical variables to beta diversity was tested for using the Adonis function 726 

(PERMANOVA) in vegan. Comparisons of proportional carriage of key taxa and resistance 727 

genes between groups were assessed using the Chi-squared test. Generalised linear models 728 

assuming a negative binomial distribution were used to identify differentially abundant taxa 729 
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between study groups as implemented in the R package ‘mare’. Hierarchical clustering of 730 

resistance gene abundances and heatmap generation was performed with the package 731 

‘heatmap3’ using log-transformed Euclidean distance for distance matrix construction from 732 

count data. For comparison of resistance gene and metabolic pathways counts between groups, 733 

the Mann-Whitney U test was used. All p values obtained from testing with multiple 734 

comparisons were corrected for false discovery rate (FDR, Benjamini-Hochberg). The fold 735 

changes observed in the relative abundances of VCs across geographical and diarrhoeal status 736 

cohorts were calculated using the ‘gtools’ package in R. Using the same package, the fold 737 

changes were converted to log ratios (base 10). All graphical images were generated using 738 

‘ggplot2’. 739 
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 1054 

Figure legends 1055 

Figure 1. Nagpur District.  1056 

Mapped locations of study participant home residences in Nagpur district.  1057 

 1058 

Figure 2. Variations in the gut microbiota by geographic location and diarrhoeal status. 1059 

(A) Principal coordinates analysis (PCoA) of microbiota profiles based on Bray-Curtis 1060 

Dissimilarity of species-level taxonomic abundance. Subject profiles vary by both geographic 1061 

location and diarrhoeal status. (B) Comparison of microbial diversity between diarrhoeal and 1062 
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non-diarrhoeal control subjects from both rural and urban geographic locations. * p.corr=0.05. 1063 

(C) Summary of genus-level taxonomic profiles by subject. Subjects are grouped by 1064 

geographic location and diarrhoeal status, with diarrhoeal subjects further subdivided into C. 1065 

difficile toxin positive (CDT +ve) and negative (CDT –ve). Bacteroides dominant profiles are 1066 

more frequent in urban subjects, while Prevotella dominant profiles are more frequent in rural 1067 

subjects. (D) Differentially abundant taxa at species-level based on either geographic location 1068 

(left, rural vs urban control subjects) or diarrhoeal status (right, non-diarrhoeal controls vs 1069 

diarrhoeal). All taxa shown are significantly different between groups based on generalized 1070 

linear models with FDR corrected p<0.05. 1071 

 1072 

Figure 3. Analysis of antimicrobial resistance gene carriage by gut microbiota. (A) 1073 

Heatmap of antimicrobial resistance (AMR) gene abundance aggregated by antibiotic class. 1074 

Individual columns show subjects grouped by geography (rural – yellow vs. urban – blue), 1075 

diarrhoeal status (non-diarrhoeal - green vs. diarrhoeal – red) and antibiotic exposure (brown). 1076 

Row order represents hierarchical clustering of resistance gene count data using a Euclidean 1077 

distance matrix. MLS = Macrolides, Lincosamides and Streptogramins. (B) Heatmap of 1078 

antimicrobial resistance gene cluster abundance for Beta-lactam antibiotics. Columns represent 1079 

individual subjects, grouped as above. Individual gene cluster codes are shown in rows 1080 

corresponding to MegaRes database entries. Beta-lactam resistance mechanisms for each gene 1081 

cluster are indicated to the left of the heatmap; Ambler class A to D, Porin mutant or PBP 1082 

(Penicillin Binding Protein). (C) Comparison of the Beta-lactam resistance gene counts which 1083 

differed significantly between rural and urban subjects. All statistical comparisons between 1084 

urban and rural subjects were made with the Mann-Whitney U test with FDR correction and 1085 

results indicated in each panel. * p < 0.05, ** p < 0.01, *** p < 0.001.  1086 
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 1087 

Figure 4. Taxonomic contributions to differentially enriched metabolic pathways.  The 1088 

top 10 pathways enriched in either urban or rural subjects are shown with the predicted 1089 

contribution of individual taxa to the overall pathway variance (red diamonds). For each 1090 

pathway, the top and bottom bars indicate urban and rural associated taxa respectively, 1091 

displaying the predicted contribution of each taxon to enrichment in either group; urban 1092 

(positive) or rural (negative). For example, enrichment of Lipoic acid metabolism in urban 1093 

subjects is associated with the positive contribution (a) of Klebsiella pneumoniae (Kp), 1094 

Parabacteroides distasonis (Pd) and Bacteroides vulgatus (Bv), with only minor negative 1095 

contributions from multiple other species (b). Rural associated taxa contributing to enrichment 1096 

in urban subjects (c), most likely because they encode the function sparsely, include Prevotella 1097 

copri (Pc) and Eubacterium rectale (Er). Prevotella stercorea (Ps) is predicted to enrich this 1098 

pathway in rural subjects (d), acting against the total observed shift.  1099 

 1100 

Figure 5. Contrasting faecal viromes by geographic location and diarrhoeal status. (A) 1101 

Network visualisation of viral clustering.Viral clusters (VCs) containing previously 1102 

characterised viral sequences (viral RefSeq 85) are coloured by International Committee on 1103 

Taxonomy of Viruses (ICTV) family-level taxonomic assignments. While Microviridae VCs 1104 

are connected to Caudovirales through shared protein clusters, these taxa are unrelated. (B) 1105 

Inverse Simpson diversity comparisons of subjects by diarrhoeal status and geographic 1106 

location. (C) Principal coordinate analysis of VC profiles based on Bray-Curtis Dissimilarity. 1107 

(D) The fold change (log10) of the top 25 most abundant rural and urban VCs, with 1108 

superimposition of the same VC’s association with either health or diarrhoeal status. (E) The 1109 

fold change (log10) of all VCs relative abundance that are targeted by CRISPR spacers from 1110 
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identifiable bacterial genera. Each point represents a VC, with size representing the aggregate 1111 

number of CRISPR spacers targeting individual viruses within a cluster. 1112 

 1113 

Figure 6. Examination of the auxiliary metabolic potential of human faecal viruses. (A) 1114 

Shared proteins encoded by Viral Clusters (VCs) shared amongst 10 or more individuals within 1115 

this study. (B) The VC-encoded metabolic functions were determined per individual virome, 1116 

with the similarities between subjects visualised by principal coordinate analysis using the 1117 

Jaccard index. (C) Relative abundance comparisons of the protein categorical-function 1118 

predictions of VCs by residence. (D & E) The observed frequency of amino acid transport and 1119 

metabolism functions, and carbohydrate transport and metabolism functional predictions 1120 

encoded by individual virome VCs. Only statistically significant EggNOG functional 1121 

predictions are displayed (Mann-Whitney U test with Bonferroni correction, p adj = 0.05). 1122 
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