1,782 research outputs found

    A Fault Analytic Method against HB+

    Get PDF
    The search for lightweight authentication protocols suitable for low-cost RFID tags constitutes an active and challenging research area. In this context, a family of protocols based on the LPN problem has been proposed: the so-called HB-family. Despite the rich literature regarding the cryptanalysis of these protocols, there are no published results about the impact of fault analysis over them. The purpose of this paper is to fill this gap by presenting a fault analytic method against a prominent member of the HB-family: HB+ protocol. We demonstrate that the fault analysis model can lead to a flexible and effective attack against HB-like protocols, posing a serious threat over them

    Commitment and Oblivious Transfer in the Bounded Storage Model with Errors

    Get PDF
    The bounded storage model restricts the memory of an adversary in a cryptographic protocol, rather than restricting its computational power, making information theoretically secure protocols feasible. We present the first protocols for commitment and oblivious transfer in the bounded storage model with errors, i.e., the model where the public random sources available to the two parties are not exactly the same, but instead are only required to have a small Hamming distance between themselves. Commitment and oblivious transfer protocols were known previously only for the error-free variant of the bounded storage model, which is harder to realize

    On the Commitment Capacity of Unfair Noisy Channels

    Get PDF
    Noisy channels are a valuable resource from a cryptographic point of view. They can be used for exchanging secret-keys as well as realizing other cryptographic primitives such as commitment and oblivious transfer. To be really useful, noisy channels have to be consider in the scenario where a cheating party has some degree of control over the channel characteristics. Damg\r{a}rd et al. (EUROCRYPT 1999) proposed a more realistic model where such level of control is permitted to an adversary, the so called unfair noisy channels, and proved that they can be used to obtain commitment and oblivious transfer protocols. Given that noisy channels are a precious resource for cryptographic purposes, one important question is determining the optimal rate in which they can be used. The commitment capacity has already been determined for the cases of discrete memoryless channels and Gaussian channels. In this work we address the problem of determining the commitment capacity of unfair noisy channels. We compute a single-letter characterization of the commitment capacity of unfair noisy channels. In the case where an adversary has no control over the channel (the fair case) our capacity reduces to the well-known capacity of a discrete memoryless binary symmetric channel

    Hardening DGA classifiers utilizing IVAP

    Get PDF
    Domain Generation Algorithms (DGAs) are used by malware to generate a deterministic set of domains, usually by utilizing a pseudo-random seed. A malicious botmaster can establish connections between their command-and-control center (C&C) and any malware-infected machines by registering domains that will be DGA-generated given a specific seed, rendering traditional domain blacklisting ineffective. Given the nature of this threat, the real-time detection of DGA domains based on incoming DNS traffic is highly important. The use of neural network machine learning (ML) models for this task has been well-studied, but there is still substantial room for improvement. In this paper, we propose to use Inductive Venn-Abers predictors (IVAPs) to calibrate the output of existing ML models for DGA classification. The IVAP is a computationally efficient procedure which consistently improves the predictive accuracy of classifiers at the expense of not offering predictions for a small subset of inputs and consuming an additional amount of training data

    A CCA2 Secure Variant of the McEliece Cryptosystem

    Get PDF
    The McEliece public-key encryption scheme has become an interesting alternative to cryptosystems based on number-theoretical problems. Differently from RSA and ElGa- mal, McEliece PKC is not known to be broken by a quantum computer. Moreover, even tough McEliece PKC has a relatively big key size, encryption and decryption operations are rather efficient. In spite of all the recent results in coding theory based cryptosystems, to the date, there are no constructions secure against chosen ciphertext attacks in the standard model - the de facto security notion for public-key cryptosystems. In this work, we show the first construction of a McEliece based public-key cryptosystem secure against chosen ciphertext attacks in the standard model. Our construction is inspired by a recently proposed technique by Rosen and Segev

    An evaluation of DGA classifiers

    Get PDF
    Domain Generation Algorithms (DGAs) are a popular technique used by contemporary malware for command-and-control (C&C) purposes. Such malware utilizes DGAs to create a set of domain names that, when resolved, provide information necessary to establish a link to a C&C server. Automated discovery of such domain names in real-time DNS traffic is critical for network security as it allows to detect infection, and, in some cases, take countermeasures to disrupt the communication and identify infected machines. Detection of the specific DGA malware family provides the administrator valuable information about the kind of infection and steps that need to be taken. In this paper we compare and evaluate machine learning methods that classify domain names as benign or DGA, and label the latter according to their malware family. Unlike previous work, we select data for test and training sets according to observation time and known seeds. This allows us to assess the robustness of the trained classifiers for detecting domains generated by the same families at a different time or when seeds change. Our study includes tree ensemble models based on human-engineered features and deep neural networks that learn features automatically from domain names. We find that all state-of-the-art classifiers are significantly better at catching domain names from malware families with a time-dependent seed compared to time-invariant DGAs. In addition, when applying the trained classifiers on a day of real traffic, we find that many domain names unjustifiably are flagged as malicious, thereby revealing the shortcomings of relying on a standard whitelist for training a production grade DGA detection system

    Apresentações do coral UDESC Joinville IV

    Get PDF
    Trabalho apresentado no 31º SEURS - Seminário de Extensão Universitária da Região Sul, realizado em Florianópolis, SC, no período de 04 a 07 de agosto de 2013 - Universidade Federal de Santa Catarina.Este projeto pretende performar apresentações didáticas e culturais em formato coral. O repertório abrange músicas diversas sempre inserindo temas de origem brasileira. Através do projeto proporciona-se experiência musical para os participantes desenvolvendo, nos mesmos, habilidades artísticas para serem aplicadas ao canto em grupo, bem como fazer apresentações em que os participantes possam mostrar o que estão produzindo. O desenvolvimento de diversos repertórios contribui para o aprimoramento da experiência musical de cada participante bem como do público que irá assistir as apresentações. Outro objetivo do projeto é o de representar o Centro de Ciências Tecnológicas em diversos eventos dentro e fora da universidade. O grupo mantém atividades de ensaio de naipes e ensaio de grupo, sob a regência do Maestro Anderson Maurício do Nascimento. Conforme as solicitações que recebemos e/ou apresentações estabelecemos um cronograma de atividades
    • …
    corecore