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Abstract—Domain Generation Algorithms (DGAs) are used
by malware to generate a deterministic set of domains, usually
by utilizing a pseudo-random seed. A malicious botmaster can
establish connections between their command-and-control cen-
ter (C&C) and any malware-infected machines by registering
domains that will be DGA-generated given a specific seed,
rendering traditional domain blacklisting ineffective. Given
the nature of this threat, the real-time detection of DGA
domains based on incoming DNS traffic is highly important.
The use of neural network machine learning (ML) models for
this task has been well-studied, but there is still substantial
room for improvement. In this paper, we propose to use
Inductive Venn–Abers predictors (IVAPs) to calibrate the
output of existing ML models for DGA classification. The IVAP
is a computationally efficient procedure which consistently
improves the predictive accuracy of classifiers at the expense
of not offering predictions for a small subset of inputs and
consuming an additional amount of training data.
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I. INTRODUCTION

Botmasters commonly use domain generation algorithms
(DGAs) to form connections between their command-and-
control centers (C&C) and malware-infected machines [1].
The ability to dynamically generate new domain names pre-
vents ordinary blacklisting from effectively blocking access
between the botmaster and infected machines, highlighting
the need for real-time classifiers that can accurately detect
DGAs in DNS traffic (see e.g. [2], [3], [4], [5]). The
effectiveness of various DGA classifiers on such data was
explored in [6]. Here, we improve these results using Induc-
tive Venn-Abers Predictors (IVAPs), which were introduced
by [7]. This methodology improves binary classification
results at the expense of not offering predictions for a small
number of inputs and decreasing the training data volume
to form an additional calibration data set.

Specifically, the IVAP algorithm uses an additional held-
out calibration set in order to gauge the reliability of the
predictions made by an existing model. We exploit this
property to detect when the model is too unreliable on a
given sample. By rejecting predictions if the uncertainty is
too high, we are able to significantly increase true positive

rates while maintaining the same low false positive rate.
In deployed DGA detection systems, a low false positive
rate is very important, because blocking legitimate traffic is
highly undesirable. In practice, predictions that were rejected
because they were found too unreliable, may be fed into a
more complex model or deferred to human experts.

II. RAW DATA

This paper uses raw data collected from three sources:
Alexa, Qname, and Bambenek. The data sets utilized are
the same as those used in [8].

Alexa1 offers a list of the top one million domains based
on their popularity in terms of number of page views and
number of unique visitors. It only retains the websites’
second level domain names (SLDs), aggregating across any
subdomains. For example, according to Alexa, the three
highest ranked domain names in terms of popularity on
2019-11-19 are google.com, youtube.com, and tmall.com.
This Alexa top 1 million list serves as a relatively reliable
source for benign, non-DGA generated domains but is not
necessarily an accurate representation of benign web traffic
as whole.

Qname contains domain names originating from a real-
time stream of passive DNS data that consists of roughly 10-
12 billion DNS queries per day collected from subscribers
including ISPs (Internet Service Providers), schools, and
businesses. We retained 1 million domain names that match
three criteria: (1) the domain is at least 30 days old, (2) the
domain has been resolved at least twice, and (3) queries to
the domain have never resulted in an NXDomain response.
This data set is intended to serve as a source of benign
ground truth that is more reflective of real web traffic than
Alexa.

Bambenek2 offers a daily feed of domains generated
by reverse engineering known families of malware.
One million different DGA domains were collected over
the course of three days to construct a malicious data set [8].

1https://www.alexa.com/topsites
2https://osint.bambenekconsulting.com/feeds/
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III. DEEP LEARNING ARCHITECTURES

We utilize three neural network architectures that have
been well-reviewed in past DGA classification literature:
• LSTM.MI is a unidirectional LSTM recurrent neural net-

work architecture original proposed in [5] that has been
shown to be highly effective at DGA detection [6], [8].

• Invincea is a neural network architecture created in [3]
that features parallel convolution layers.

• MIT is a hybrid CNN/RNN neural network architecture
introduced in [9] and shown to be effective for inline DGA
detection in [10]. It features stacked CNN layers followed
by a unidirectional LSTM layer.

IV. METHOD

We constructed two data sets, AlexaBamb and Qname-
Bamb, from the raw data from Section II. Both data sets
utilize 1 million Bambenek domains as their source of
malicious data, and feature 1 million benign domains from
Alexa and Qname respectively. The data sets were split into
four parts: 64% training, 4% validation, 16% calibration,
and 16% testing. We trained models with the architectures
from Section III for a maximum of 100 epochs with early
stopping on the validation loss set at 10 epochs. The final
results, as reported in section V, were calculated using the
16% testing data.

The IVAP method works by taking an existing ML model
F as well as a held-out calibration set. It uses these data
to calibrate the predictions of F so that, at inference time,
each sample x can be associated with two probabilities p0
and p1, satisfying the following property [7]:

p0 ≤ Pr[Y = 1 | X = x] ≤ p1.

That is, they form bounds on the true probability that the
label is 1 given the input. A natural measure of uncertainty
of the IVAP is the width of this interval, p1−p0. Our method
rejects predictions where the uncertainty exceeds a specified
threshold β, which is tuned on the separate validation set.
More concretely, we use the underlying model F to predict
labels and use the IVAP to quantify the uncertainty of those
predictions in the form of the probability interval [p0, p1].
If p1 − p0 ≤ β, we simply return the prediction of F .
Otherwise, we reject the prediction, signaling that the model
F is too unreliable on the given sample to be of any use.

As noted by [7], the computational overhead of this ap-
proach is O(m logm) where m is the size of the calibration
data set. Furthermore, as the size of the calibration data set
increases, the difference p1 − p0 tends to decrease, making
it more likely that IVAP rejections are correct (in the sense
that the underlying model is probably wrong when the
uncertainty threshold is exceeded).

V. RESULTS

The results are shown in Table I. For both the Qname-
Bamb and AlexaBamb data sets, we report results for each

of the models (LSTM.MI, Invincea, and MIT) with and
without the IVAP. The metrics of interest for the baseline
models are the true positive rate (TPR), false positive rate
(FPR) and accuracy (ACC). To enable a fair comparison
with the IVAP, we compute these metrics only for the
subset of samples that were not rejected by the IVAP-
augmented model. For the IVAP, additional metrics include
the false rejection rate (FRR), true rejection rate (TRR)
and overall rejection rate (REJ). Here, a rejection is true
when the underlying model prediction was indeed wrong
and false otherwise. The rejection rate is simply the fraction
of samples for which predictions were rejected.

The uncertainty threshold β was tuned on the separate val-
idation set in order to maximize the difference TRR−FRR
similarly to Youden’s index [11]. Note that this is just one of
many possible ways one could tune β. In some applications,
one might prefer the lowest possible FPR, for example.
Moreover, since β is just a single scalar hyperparameter,
it is also possible to specify it manually without resorting to
potentially expensive hyperparameter optimization methods
on held-out data.

The use of IVAPs results in consistently better predictive
scores at the cost of a small rejection rate and the need
for additional data sets, which is in line with [7]. Most
notably, the TPR always increases across data sets and
models after the IVAP process is applied while the false
positive rate remains stable. This suggests that the IVAP
process can be used to improve the performance of existing
DGA classifiers. One exception to this is the MIT model
on the QnameBamb data set: here, all predictions were
rejected because the probability interval was always larger
than the tuned threshold would allow. We speculate that this
is due to the QnameBamb data set being more difficult to fit
properly, as evidenced by the fact that the classifiers perform
consistently better on AlexaBamb than QnameBamb. This
means that models trained on QnameBamb might require a
larger calibration set to obtain good results with the IVAP.
We leave a more in-depth exploration of the failure modes
of the IVAP to future work.

VI. CONCLUSION

We have proposed a computationally efficient procedure
for hedging the predictions of DGA classifiers. Our method
allows us to detect when these models are too unreliable on
a given sample. By rejecting predictions if the uncertainty is
too high, we achieve consistently higher predictive perfor-
mance across different models and data sets. The price to pay
for this increased performance is a smaller amount of data
available for training (as the method needs to be calibrated
on a separate held-out data set) as well as a small fraction
of samples for which we cannot give any prediction. Such
rejected predictions need to be deferred to more complex
models or to human experts.



Table I
COMPARISONS OF MODEL PERFORMANCE WITH AND WITHOUT IVAP

Data Set Classifier TPR FPR ACC FRR TRR REJ

QnameBamb

LSTM.MI 0.917 0.001 0.993 - - -
LSTM.MI + IVAP 0.993 0.001 0.996 0.064 0.922 0.100

Invincea 0.856 0.001 0.991 - - -
Invincea + IVAP 0.986 0.001 0.993 0.126 0.916 0.183

MIT 0.920 0.001 0.993 - - -
MIT + IVAP - - - - - 1.000

AlexaBamb

LSTM.MI 0.964 0.001 0.992 - - -
LSTM.MI + IVAP 0.999 0.001 0.999 0.066 0.950 0.082

Invincea 0.966 0.001 0.991 - - -
Invincea + IVAP 0.999 <0.001 0.999 0.108 0.969 0.123

MIT 0.909 0.001 0.992 - - -
MIT + IVAP 0.973 <0.001 0.988 0.286 0.493 0.290

FPR=False Positive Rate, ACC=Accuracy, TPR=True Positive Rate
TRR=True Rejection Rate, FRR=False Rejection Rate, REJ=Rejection Rate

While these results certainly highlight IVAP’s potential
for increasing the statistical measurements of DGA iden-
tification models, the IVAP can sometimes fail to calibrate
properly. This is an issue which warrants further study, since
it otherwise yields a useless model. Initial areas for further
research include comparing various model architectures,
how they affect reported loss, and how these two elements
combine to affect calibration. Data noise is also of interest,
as imprecisely labeled data (such as the Qname data) may
also affect the accuracy of the calibration step. Establishing
a relationship between the size of the calibration set and
the quality of the IVAP output similar to traditional general-
ization bounds [12] is also an interesting avenue for future
work.
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