995 research outputs found

    Double Schubert polynomials for the classical groups

    Get PDF
    For each infinite series of the classical Lie groups of type B,C or D, we introduce a family of polynomials parametrized by the elements of the corresponding Weyl group of infinite rank. These polynomials represent the Schubert classes in the equivariant cohomology of the appropriate flag variety. They satisfy a stability property, and are a natural extension of the (single) Schubert polynomials of Billey and Haiman, which represent non-equivariant Schubert classes. They are also positive in a certain sense, and when indexed by maximal Grassmannian elements, or by the longest element in a finite Weyl group, these polynomials can be expressed in terms of the factorial analogues of Schur's Q- or P-functions defined earlier by Ivanov.Comment: 41 pages, 2 tables; comments welcom

    Sex differences in gene expression and proliferation are dependent on the epigenetic modifier HP1γ

    Get PDF
    Summary Sex differences in growth rate in very early embryos have been recognized in a variety of mammals and attributed to sex-chromosome complement effects as they occur before overt sexual differentiation. We previously found that sex-chromosome complement, rather than sex hormones regulates heterochromatin-mediated silencing of a transgene and autosomal gene expression in mice. Here, sex dimorphism in proliferation was investigated. We confirm that male embryonic fibroblasts proliferate faster than female fibroblasts and show that this proliferation advantage is completely dependent upon heterochromatin protein 1 gamma (HP1γ). To determine whether this sex-regulatory effect of HP1γ was a more general phenomenon, we performed RNA sequencing on MEFs derived from males and females, with or without HP1γ. Strikingly, HP1γ was found to be crucial for regulating nearly all sexually dimorphic autosomal gene expression because deletion of the HP1γ gene in males abolished sex differences in autosomal gene expression. The identification of a key epigenetic modifier as central in defining gene expression differences between males and females has important implications for understanding physiological sex differences and sex bias in disease

    Temporal Effects of Cyclic Stretching on Distribution and Gene Expression of Integrin and Cytoskeleton by Ligament Fibroblasts In Vitro

    Get PDF
    Cyclic stretching is pivotal to maintenance of the ligaments. However, it is still not clear when ligament fibroblasts switch on expression of genes related to the mechanotransduction pathway in response to cyclic stretching. This in vitro study investigated, using ligament fibroblasts, the time-dependent changes in distribution and gene expression of β1 integrin, the cytoskeleton, and collagens after the application of 6% cyclic stretching at a frequency of 0.1 Hz for 3 hr on silicon membranes. We carried out confocal laser scanning microscopy to demonstrate changes in distribution of these components as well as quantitative real-time RT-PCR to quantify levels of these gene expression both during application of cyclic stretching and at 0, 2, 6, 12, and 18 hr after the termination of stretching. Control (unstretched) cells were used at each time point. Within 1 hr of the application of stretching, the fibroblasts and their actin stress fibers became aligned in a direction perpendicular to the major axis of stretch, whereas control (unstretched) cells were randomly distributed. In response to cyclic stretching, upregulation of actin at the mRNA level was first observed within 1 hr after the onset of stretching, while upregulation of β1 integrin and type I and type III collagens was observed between 2 and 12 hr after the termination of stretching. These results indicate that the fibroblasts quickly modify their morphology in response to cyclic stretching, and subsequently they upregulate the expression of genes related to the mechanotransduction pathway mainly during the resting period after the termination of stretching

    Altered collecting duct adenylyl cyclase content in collecting duct endothelin-1 knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelin-1 (ET-1) inhibition of vasopressin (AVP)-stimulated water reabsorption by the inner medullary collecting duct (IMCD) is associated with reduced cAMP accumulation. To determine the effect of ET-1 deficiency, AVP-stimulated cAMP responsiveness was assessed in IMCD from mice with collecting duct-specific deletion of ET-1 (CD ET-1 KO) and from control animals.</p> <p>Methods</p> <p>Cyclic AMP production, adenylyl cyclase (AC) mRNA, and AC protein were measured in acutely isolated IMCD.</p> <p>Results</p> <p>CD ET-1 KO IMCD had enhanced AVP-stimulated cAMP accumulation. Inhibition of calcium-stimulated AC using BAPTA did not prevent enhanced AVP responsiveness in CD ET-1 KO IMCD. Factors known to be modified by ET-1, including nitric oxide, cyclooxygenase metabolites, and superoxide did not affect the increased AVP responsiveness of CD ET-1 KO IMCD. Differential V2 receptor or G-protein activity was not involved since CD ET-1 KO IMCD had increased cAMP accumulation in response to forskolin and/or cholera toxin. CD ET-1 KO did not affect mRNA or protein levels of AC3, one of the major known collecting duct AC isoforms. However, the other known major collecting duct AC isoform (AC5/6) did have increased protein levels in CD ET-1 KO IMCD, although AC5 (weak signal) and 6 mRNA levels were unchanged.</p> <p>Conclusion</p> <p>ET-1 deficiency increases IMCD AC5/6 content, an effect that may synergize with acute ET-1 inhibition of AVP-stimulated cAMP accumulation.</p
    corecore