8 research outputs found

    Comparison study of machine learning classifiers to detect anomalies

    Get PDF
    In this era of Internet ensuring the confidentiality, authentication and integrity of any resource exchanged over the net is the imperative. Presence of intrusion prevention techniques like strong password, firewalls etc. are not sufficient to monitor such voluminous network traffic as they can be breached easily. Existing signature based detection techniques like antivirus only offers protection against known attacks whose signatures are stored in the database.Thus, the need for real-time detection of aberrations is observed. Existing signature based detection techniques like antivirus only offers protection against known attacks whose signatures are stored in the database. Machine learning classifiers are implemented here to learn how the values of various fields like source bytes, destination bytes etc. in a network packet decides if the packet is compromised or not . Finally the accuracy of their detection is compared to choose the best suited classifier for this purpose. The outcome thus produced may be useful to offer real time detection while exchanging sensitive information such as credit card details

    Pigeonpea sterility mosaic virus a green plague-Current status of available drug and new potential targets

    No full text
    Pigeonpea is one of the important legume crops with high protein content and nutritional traits. It has enormous potency for its widespread adoption by farming communities. It is affected by various kinds of biotic and abiotic stresses. In the context, of biotic stresses Sterility mosaic disease (SMD) is one of the severe diseases in pigeonpea which ultimately lead to the drastic yield loss. The virus belongs to the genus Emaravirus, family- Fimoviridae. SMD is associated with two diverse types of Emaravirus, Pigeonpea sterility mosaic virus1 (PPSMV-1) and Pigeonpea sterility mosaic virus 2 (PPSMV-2). It is transmitted by the mite (Aceria cajani), mainly environmental contributing to the feasibility for the mites for the inoculation of the virus. The SMD is mainly governed by two genes SV1 that includes the dominant allele and serves as an inhibitory action on the resistance of the SV2. Methods for identification of the virus include RT-PCR, DIBA and ELISA using alkaline phosphatase or penicillinase. To control SMV disease farmers generally adopted intercropping methods. There are few potential drugs have been identified for the administration of the disease such as 0.1% Fenazaquin, Dicofol, Imidacloripid, Carbosulfan; Spiromesifin includes the inhibition of the mite inoculation on the pigeonpea plant. The present review describes compressive and systematic insights on SMV protein targets and potential drugs that could be utilized as the presumed drug targets for the finding of true drugs against the SMD in pigeonpea

    Diagnosis and treatment of appendicitis: Systematic review and meta-analysis

    No full text
    Background:The optimal diagnosis and treatment of appendicitis remains controversial. This systematic review details the evidence and current best practices for the evaluation and management of uncomplicated and complicated appendicitis in adults and children. Methods:Eight questions regarding the diagnosis and management of appendicitis were formulated. PubMed, Embase, CINAHL, Cochrane and clinicaltrials.gov/NLM were queried for articles published from 2010 to 2022 with key words related to at least one question. Randomized and non-randomized studies were included. Two reviewers screened each publication for eligibility and then extracted data from eligible studies. Random effects meta-analyses were performed on all quantitative data. The quality of randomized and non-randomized studies was assessed using the Cochrane Risk of Bias 2.0 or Newcastle Ottawa Scale, respectively. Results:2792 studies were screened and 261 were included. Most had a high risk of bias. Computerized tomography scan yielded the highest sensitivity (\u3e 80%) and specificity (\u3e 93%) in the adult population, although high variability existed. In adults with uncomplicated appendicitis, non-operative management resulted in higher odds of readmission (OR 6.10) and need for operation (OR 20.09), but less time to return to work/school (SMD - 1.78). In pediatric patients with uncomplicated appendicitis, non-operative management also resulted in higher odds of need for operation (OR 38.31). In adult patients with complicated appendicitis, there were higher odds of need for operation following antibiotic treatment only (OR 29.00), while pediatric patients had higher odds of abscess formation (OR 2.23). In pediatric patients undergoing appendectomy for complicated appendicitis, higher risk of reoperation at any time point was observed in patients who had drains placed at the time of operation (RR 2.04). Conclusions:This review demonstrates the diagnosis and treatment of appendicitis remains nuanced. A personalized approach and appropriate patient selection remain key to treatment success. Further research on controversies in treatment would be useful for optimal management
    corecore