113 research outputs found

    Pair Creation of Massless Fermions in Electric Flux Tube

    Full text link
    Using chiral anomaly, we discuss the pair creation of massless fermions in an electric flux tube E\vec{E} under homogeneous magnetic field B\vec{B} parallel to E\vec{E}. The tube is axial symmetric and infinitely long in longitudinal direction. In the limit BEB\gg E, we can analytically obtain the spatial and temporal behaviors of the electric field and azimuthal magnetic field generated by the produced fermions. We find that the life time tct_c of the electric field is shorter as the width of the tube is narrower. Applying it to the glasma in high-energy heavy-ion collisions, we find that color electric field decays fast such as tcQs1t_c\simeq Q_s^{-1} with saturation momentum QsQ_s.Comment: 6 pages, 4 figure

    Schwinger Pair Production at Finite Temperature in Scalar QED

    Full text link
    In scalar QED we study the Schwinger pair production from an initial ensemble of charged bosons when an electric field is turned on for a finite period together with or without a constant magnetic field. The scalar QED Hamiltonian depends on time through the electric field, which causes the initial ensemble of bosons to evolve out of equilibrium. Using the Liouville-von Neumann method for the density operator and quantum states for each momentum mode, we calculate the Schwinger pair-production rate at finite temperature, which is the pair-production rate from the vacuum times a thermal factor of the Bose-Einstein distribution.Comment: RevTex 10 pages, no figure; replaced by the version accepted in Phys. Rev. D; references correcte

    Worldline approach to helicity flip in plane waves

    Get PDF
    We apply worldline methods to the study of vacuum polarisation effects in plane wave backgrounds, in both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in the background field, and provide a toolkit of methods for use in investigations of higher-order processes. We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum polarisation effects.Comment: 11 pages, 1 figur

    Effective Action of QED in Electric Field Backgrounds II: Spatially Localized Fields

    Full text link
    We find the Bogoliubov coefficient from the tunneling boundary condition on a charged particle coupled to a static electric field E0sech2(z/L)E_0 sech^2 (z/L) and, using the regularization scheme in Phys. Rev. D 78, 105013 (2008), obtain the exact one-loop effective action in scalar and spinor QED. It is shown that the effective action satisfies the general relation between the vacuum persistence and the mean number of produced pairs. We advance an approximation method for general electric fields and show the duality between the space-dependent and time-dependent electric fields of the same form at the leading order of the effective actions.Comment: RevTex 7 pages, no figure; extension of arXiv:0807.2696 to space-dependent electric fields; new section added on approximate effective actions in general electric fields and conclusion shortened; references added; replaced by the version to be published in Phys. Rev.

    Dynamics of the Chiral Magnetic Effect in a weak magnetic field

    Full text link
    We investigate the real-time dynamics of the chiral magnetic effect in quantum electrodynamics (QED) and quantum chromodynamics (QCD). We consider a field configuration of parallel (chromo)electric and (chromo)magnetic fields with a weak perpendicular electromagnetic magnetic field. The chiral magnetic effect induces an electromagnetic current along this perpendicular magnetic field, which we will compute using linear response theory. We discuss specific results for a homogeneous sudden switch-on and a pulsed (chromo)electric field in a static and homogeneous (chromo)magnetic field. Our methodology can be easily extended to more general situations. The results are useful for investigating the chiral magnetic effect with heavy ion collisions and with lasers that create strong electromagnetic fields. As a side result we obtain the rate of chirality production for massive fermions in parallel electric and magnetic fields that are static and homogeneous.Comment: 13 pages, 7 figures, revte

    Renormalized Effective Actions in Radially Symmetric Backgrounds I: Partial Wave Cutoff Method

    Get PDF
    The computation of the one-loop effective action in a radially symmetric background can be reduced to a sum over partial-wave contributions, each of which is the logarithm of an appropriate one-dimensional radial determinant. While these individual radial determinants can be evaluated simply and efficiently using the Gel'fand-Yaglom method, the sum over all partial-wave contributions diverges. A renormalization procedure is needed to unambiguously define the finite renormalized effective action. Here we use a combination of the Schwinger proper-time method, and a resummed uniform DeWitt expansion. This provides a more elegant technique for extracting the large partial-wave contribution, compared to the higher order radial WKB approach which had been used in previous work. We illustrate the general method with a complete analysis of the scalar one-loop effective action in a class of radially separable SU(2) Yang-Mills background fields. We also show that this method can be applied to the case where the background gauge fields have asymptotic limits appropriate to uniform field strengths, such as for example in the Minkowski solution, which describes an instanton immersed in a constant background. Detailed numerical results will be presented in a sequel.Comment: 35 page

    Fermion Pair Production From an Electric Field Varying in Two Dimensions

    Get PDF
    The Hamiltonian describing fermion pair production from an arbitrarily time-varying electric field in two dimensions is studied using a group-theoretic approach. We show that this Hamiltonian can be encompassed by two, commuting SU(2) algebras, and that the two-dimensional problem can therefore be reduced to two one-dimensional problems. We compare the group structure for the two-dimensional problem with that previously derived for the one-dimensional problem, and verify that the Schwinger result is obtained under the appropriate conditions.Comment: Latex, 14 pages of text. Full postscript version available via the worldwide web at http://nucth.physics.wisc.edu/ or by anonymous ftp from ftp://nucth.physics.wisc.edu:/pub/preprints

    The probability distribution of the number of electron-positron pairs produced in a uniform electric field

    Full text link
    The probability-generating function of the number of electron-positron pairs produced in a uniform electric field is constructed. The mean and variance of the numbers of pairs are calculated, and analytical expressions for the probability of low numbers of electron-positron pairs are given. A recursive formula is derived for evaluating the probability of any number of pairs. In electric fields of supercritical strength |eE| > \pi m^2/ \ln 2, where e is the electron charge, E is the electric field, and m is the electron mass, a branch-point singularity of the probability-generating function penetrates the unit circle |z| = 1, which leads to the asymptotic divergence of the cumulative probability. This divergence indicates a failure of the continuum limit approximation. In the continuum limit and for any field strength, the positive definiteness of the probability is violated in the tail of the distribution. Analyticity, convergence, and positive definiteness are restored upon the summation over discrete levels of electrons in the normalization volume. Numerical examples illustrating the field strength dependence of the asymptotic behavior of the probability distribution are presented.Comment: 7 pages, REVTeX, 4 figures; new references added; a short version of this e-print has appeared in PR
    corecore