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We apply worldline methods to the study of vacuum polarization effects in plane wave backgrounds, in
both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in
the background field, and provide a toolkit of methods for use in investigations of higher-order processes.
We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum
polarization effects.
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I. INTRODUCTION

Vacuum polarization effects may be probed using strong
electromagnetic fields, as may be generated by using e.g.
intense lasers. As such the measurement of “vacuum
birefringence” [1] (a matterless analogue of birefringence
in optics) in the collision of x-ray and optical laser pulses,
has been selected as a flagship experiment at DESY [2],
following [3]. For both the theoretical and experimental
status of birefringence studies see the recent reviews [4,5].
Vacuum polarization effects stem of course from photon-

photon scattering [6] and are captured, to lowest order, by
the one-loop polarization tensor in a background field. It is
usually enough, considering current experimental abilities,
to consider photon-photon interactions at the level of the
low-energy Euler-Heisenberg effective action [7,8]. As
access to new parameter regimes becomes available [9],
it will though become increasingly important to go beyond
low-energy approximations. Investigations in this direction
are driven not only by phenomenological interest, but also
by a desire to better understand higher-order, all-orders,
and nonperturbative strong field effects in quantum field
theory [10–14]. On this note, it is possible to calculate the
polarization tensor exactly for certain background fields.
One example is a plane wave, as shown some years ago for
a constant “crossed” field in [15], and for arbitrary plane
wave shape and strength in [16] (using Green’s function
methods) and [17] (using operator methods). The polari-
zation tensor in both plane waves and magnetic fields has
recently been reconsidered by several groups [18–22]. This
has lead to many new insights, in particular with regard to
realistic field geometries [23–25], which must be accounted
for in light-by-light scattering experiments [23,26,27] and
vacuum birefringence experiments [2,3,5,28].
The original derivations of polarization tensor results are

rather involved, and it would be preferable to have more
transparent expressions in order to improve our under-
standing of strong-field vacuum polarization effects: even

investigations of the plane wave case can reveal insights
which may be extended to more general field configura-
tions [25,29]. For these reasons we will here reconsider
the plane wave polarization tensor in another formalism,
namely that of worldline path integrals [30–36]—see [37]
for an introduction and [38] for a review. The worldline
formalism has proven powerful for the study of many
topics, only a few examples of which are pair production
[39–51], photon splitting [52], QCD [53], string theories
with contact interactions [54,55], and two loop Euler-
Heisenberg effective action [56,57]. Worldline path inte-
grals also lend themselves to numerical evaluation using
Monte Carlo methods [58–61].
Our modest aim here is to use the worldline formalism to

recover vacuum polarization effects in inhomogeneous
plane wave backgrounds, of arbitrary strength and shape.
(This formalism has previously been applied to the study of
one-loop photonics processes in constant fields [62–64] and
in inhomogeneous magnetic fields [58]). As part of this
calculationwewill produce a new toolboxwhich can be used
to apply worldline methods to more complicated higher-
order strong-field processes in plane wave backgrounds.
This paper is organized as follows. Directly below we

introduce our notation and conventions, and then describe
the observables of interest, namely the helicity-flip prob-
abilities in our chosen background field. In Sec. II we
perform the worldline calculation of the helicity flip
probability. In Sec. III we extend this to the spinor case
and compare two different worldline methods for calculat-
ing the spin contribution. We discuss the results and
conclude in Sec. IV. The appendix contains normalizations
for worldline path integrals.

A. Notation and conventions

Our background field depends only on the phase ϕ ≔
n:x where n2 ¼ 0, and is transverse. We can always choose
coordinates such that n:x ¼ x0 þ x3 ¼ xþ, “lightfront
time,” and then E and B point in the ⊥ ≔ fx1; x2g
directions. We define x− ¼ x0 − x3. We use lightfront
gauge n:A ¼ 0 for the background; residual gauge freedom
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can then be used to remove a second component, such that
the potential has only transverse components A⊥≡
A⊥ðxþÞ ≠ 0. The nonzero part of the field strength is
Fþ⊥ ¼ ∂þA⊥. This choice of potential has the advantage
of making the physical (kinematic) particle momentum
manifest in scattering calculations [65]. The fields here may
take any shape we choose. To emphasize that we treat the
background exactly, i.e. without recourse to perturbation in
the field strength, we absorb the coupling into the field,
writing aμ ≔ eAμ.

B. Helicity flip

Rather than calculate the polarization tensor we calculate
directly the observables of interest, namely the scattering
amplitudes for photons of momentum lμ → l0μ and helicity
state ϵμ → ϵ0μ. (These could also be obtained by first
calculating the polarization tensor and then contracting
with appropriate asymptotic states, see e.g. [17,20,21] and
references therein.) However, on-shell scattering of single
photons is automatically forward in a plane wave. This
is a consequence of the integrability of the equations of
motion; classically, the transverse canonical momenta and
the physical longitudinal momentum are conserved in the
Lorentz force equation, and quantum mechanically the
fermion propagator depends nontrivially only on xþ, which
leads to overall conservation of three momentum compo-
nents in scattering amplitudes. While these conservation
laws force an on-shell photon to scatter forward, internal
degrees of freedom can still change. In particular, the
photon helicity can flip, which is the microscopic descrip-
tion of vacuum birefringence [20]. We therefore consider
the total probability of helicity-flip Pflip, which is (with
appropriately normalized wave packets taken into account,
see below) just the probability for forward-scattering plus
helicity-flip.
In order to guide us we briefly mention two properties

of the flip probability before beginning the calculation.
First, an S-matrix calculation, or a calculation in lightfront
perturbation theory, expresses the flip probability as a
double integral [16,20,21] over two lightfront times ϕ
and θ which are related to the spacetime vertex positions
ϕ� θ=2 in the relevant Feynman diagram; see Fig. 1.
Second, the integrand in the probability depends on the
“effective mass”

M2 ¼ m2 − ha2i þ hai2; ð1Þ

defined by the moving average [66]

hfi ¼ 1

θ

Z
ϕþθ=2

ϕ−θ=2
dφfðφÞ: ð2Þ

The effective mass appears classically after averaging a
particle’s kinetic momentum πμ over propagation time,
hπμihπμi ¼ M2. It appears in scattering probabilities after
integrating over final states [67], and in scattering ampli-
tudes after performing loop integrals [20,66]; see e.g. [68]
for a discussion of the phenomenology of the effective
mass. We now proceed with our worldline calculation.

II. SCALAR QED

In the worldline formalism the helicity-flip amplitude in
scalar QED (“sQED”) is [64]

T ¼ ðieÞ2
Z

∞

0

dT
T

I
DxμeiS

Z
1

0

dσ0eil0:xðσ0Þϵ0:_xðσ0Þ

×
Z

1

0

dσe−il:xðσÞϵ:_xðσÞ; ð3Þ

where the worldline action S describes a relativistic particle
coupled to the background field aμ,

S ¼ −m2
T
2
−
Z

1

0

dτ
_x2

2T
þ aðxÞ:_x; ð4Þ

and a dot is a derivative with respect to τ, which para-
metrizes the worldline. As usual (see e.g. [64]) we
exponentiate the vertex operators in (3) and write their
contribution as a source term in the action, remembering
to keep, at the end, only terms which are linear in all
polarization vectors:

T ¼ ðieÞ2
Z

∞

0

dT
T

Z
1

0

dσ0dσ

×
I

Dxμ exp

�
iS − i

Z
1

0

dτJμxμðτÞ
�
; ð5Þ

where the source is

FIG. 1. Left: The Furry-Feynman diagram for photon-photon scattering in a background field, to one loop. The double line represents
fermions dressed (to all orders) by the background.Middle: The two vertices have lightfront-time coordinates xþ ¼ ϕ� θ=2. Right: In a
plane wave the “minus” momentum component is conserved, as in vacuum. The momentum flowing around the loop is parametrized in
terms of the momentum fraction s ≔ n:p=n:l ¼ p−=l−.
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Jμ ¼ lμδðτ − σÞ − l0μδðτ − σ0Þ þ ϵμ _δðτ − σÞ
− ϵ0μ _δðτ − σ0Þ: ð6Þ

We divide each coordinate x into a center of mass xc and an
oscillating, nonconstant piece y, so xμ ¼ xμc þ yμ, where
(see the appendix)

Z
1

0

dτyμðτÞ ¼ 0: ð7Þ

The x⊥c and x−c integrals can be performed immediately to
yield the momentum conservation laws described above:

T ¼ ðieÞ2
2

ð2πÞ3δ3⊥;−ðl0 − lÞ
Z

dxþc

Z
∞

0

dT
T

Z
1

0

dσ0dσT2

×
I

Dyμ exp

�
iðl0þ − lþÞxþc þ iS − i

Z
1

0

dτJμyμðτÞ
�
;

ð8Þ

where the leading 1=2 comes from the Jacobian for the
change to lightfront variables in d4xc. We will perform the
integrals above from right to left. Since our photon is on-
shell, momentum conservation sets l0þ ¼ lþ, i.e. scattering
is forward, and the first term in the exponent of (8)
drops out.
We have that l:ϵ0 ¼ l:ϵ ¼ 0. We can simplify matters by

observing that we can always make a gauge transformation
such that ϵþ ¼ ϵ0þ ¼ 0. It is not necessary to make this
transformation, but it reduces the number of terms we have
to consider.1 The next step is to perform the yμ integrals. To
do so we shift yþ and y⊥ by a solution to the equations of
motion. The classical yþ is found by solving

1

T
ÿþclðτÞ ¼ JþðτÞ ⇒ 1

T
yþclðτÞ ¼

Z
1

0

dτ0Gðτ; τ0ÞJþðτ0Þ; ð9Þ

in which G is the inverse of d2=dτ2 on the space of periodic
functions with zero average [36], hence

d2

dτ2
Gðτ; τ0Þ ¼ δðτ − τ0Þ − 1: ð10Þ

(For the case of constant background fields the action
remains quadratic in the coordinates, and it is common to
then perform calculations using the background-modified
worldline propagator. Here though it suffices to use the free
G, in both scalar and spinor QED. The reason why will
become apparent below.) We will see that the two terms in
(10) correspond precisely to the two field-dependent terms

in the effective mass (1). Having determined the classical
yþ we can find the classical y⊥:

1

T
ÿ⊥clðτÞ ¼ J⊥ðτÞ − _a⊥ðxþc þ yþcl þ yþÞ

⇒
1

T
y⊥clðτÞ ¼

Z
1

0

dτ0Gðτ; τ0Þ ~J⊥ðτ0Þ; ð11Þ

where (recalling that only the perpendicular components of
a are nonzero)

~Jμ ¼ JμðτÞ − _aμðxþ þ yþclðτÞ þ yþðτÞÞ: ð12Þ

Note that we have done nothing with y−. Shifting y by the
classical solution, the amplitude T becomes

T¼ðieÞ2
2

ð2πÞ3δ3⊥;−ðl0−lÞ
Z

dxþc

Z
∞

0

dT
T

Z
1

0

dσ0dσT2

×
I

Dyμexp

�
−i

m2T
2

−i
T
2

Z
1

0

~JμG ~Jμ−i
Z

1

0

_y2

2T
þyþJþ

�
;

ð13Þ

which still looks formidable due to the appearance of yþ,
which is to be integrated over, inside the background field
and therefore inside Jμ and ~Jμ. However, we observe that
the y− integral can be evaluated exactly, as in the free
theory, to give a delta functional which kills the oscillatory
yþ in the rest of the integral. (A similar trick is applied to
pair production in [46]; see also [32,33].) Hence all the
y–integrals may be evaluated precisely, just as in the free
theory, even though they are not Gaussian. The xc and y
integrals contribute together the free-theory factor ð2πTÞ−2;
see (A2). What remains is

T ¼ −
e2

2
ð2πÞ3δ3⊥;−ðl0 − lÞ

Z
dxþc

Z
∞

0

dT
T

ð2πTÞ−2

×
Z

1

0

dσ0dσ exp
�
−i

m2T
2

− i
T
2

Z
1

0

~JμG ~Jμ
�
; ð14Þ

where now ~Jμ ¼ JμðτÞ − _aμðxþ þ yþclðτÞÞ. The expression
(14) is almost identical to that which would be obtained in
the free theory, except that the source here contains the
gauge field. In fact the exponent in (14) is nothing but
S½xcl�, that is the action evaluated on the classical trajectory
obeying

1

T
ẍμcl ¼ Jμ þ eFμ

ν _xνcl: ð15Þ

In other words the semiclassical approximation is the exact
result here. This is a typical property of Gaussian integrals,
i.e. of free theories or theories with constant background
fields [39,69]. Here our fields are inhomogeneous but the

1This is easily shown provided l− ≠ 0. If l− ¼ 0 then l⊥ ¼ 0
and hence ϵ− ¼ 0 automatically in order to fulfil ϵ:l ¼ 0;
however in this case the probe photon travels parallel to the
laser and there is no helicity flip, so we can ignore this case.
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semiclassical result is still exact; we comment further on
this in Sec. IV. That the semiclassical result is exact is also a
well-known property of the Volkov wavefunctions which
solve the Dirac and Klein-Gordon equations in a plane
wave background.
We now evaluate the exponent in (14) and expand the

polarization terms back out. As we are looking at a
scattering amplitude there are only a few terms, and one
quickly arrives at

T ¼ ðieÞ2
2ð2πÞ2 ð2πÞ

3δ3ðl0 − lÞ
Z

dxþc

Z
∞

0

dT
T

Z; ð16Þ

in which we have defined

Z ≔
Z

1

0

dσ0dσϵ0:ðhai − aσ0 Þϵ:ðhai − aσÞ

× exp

�
−i

T
2
ðm2 − ⟪a2⟫þ ⟪a⟫2Þ

�
; ð17Þ

with a worldline average ⟪ � � �⟫ which arises from
contractions aG̈a;

⟪a⟫ ¼
Z

1

0

dτaðxþ þ yþclðτÞÞ: ð18Þ

The structure in the exponent of Z is similar to that in the
effective mass (1), but the average is taken over the
worldline rather than a spacetime variable as in (2).
“Projecting” the average into target space is in fact the
key to performing the σ, σ0 integrals. One can show using
the explicit form of yþcl that, writing s ≔ jσ − σ0j,

⟪a⟫ ¼ 1

Tlþsð1 − sÞ
Z

Tlþsð1−sÞ=2

−Tlþsð1−sÞ=2
dyaðxþc þ yÞ: ð19Þ

Now change variable in (16) from T to

θ ≔ Tlþsð1 − sÞ; ð20Þ

and change notation to ϕ ≔ n:xc ¼ xþc . The worldline
average then becomes exactly equal to (2), ⟪ � � �⟫ ¼
h� � �i, and hence the exponent in Z recovers the effective
mass (1). In the contraction aG̈a the two terms in (10)
generate the averages over a2 and over aμ squared,
respectively. Without the “background charge density”
smeared over the loop, represented by the “1” in (10)
[36], the effective mass would not be correct. The averages
over lightfront time appear in the Feynman diagram
approach after performing the transverse loop momentum
integrals; these integrals do not appear explicitly in the
worldline approach.
The change of variable (20) maps the intrinsic length

of the worldline path, T, onto θ, the spacetime separation
between Feynman diagram vertices in the n:x direction.

(This could have been guessed at the beginning: both θ and
T are integrals over the positive real line.) When rewritten
in terms of the new variables the terms outside the exponent
in (17) become

aðxþc þ yþclðσ0ÞÞ ¼ aðϕþ θ=2Þ;
aðxþc þ yþclðσÞÞ ¼ aðϕ − θ=2Þ; ð21Þ

independent of σ, σ0, the integrals over which can now be
performed. Because the integrand depends on fσ; σ0g only
in the combination sð1 − sÞ, one can show directly that
there remains no dependence on σ0 after evaluation of the σ
integral. This is just as in the theory without background
[36]. Hence we drop the σ0 integral (which contributes a
factor of unity) and integrate over σ → s. Writing x≡
M2=n:l this integral is, with Kj the modified Bessel
functions,

Z
1

0

ds exp

�
−i

x
2sð1 − sÞ

�
¼ ixe−ixðK1ðixÞ − K0ðixÞÞ

≕ I1ðxÞ: ð22Þ

This integral over the relative vertex position σ − σ0
appears in the Feynman diagram and lightfront approaches
as an integral over the lightfront momentum fraction
s ¼ n:p=n:l ¼ p−=l−, where p is the momentum of the
fermion in the loop; see Fig. 1, right hand panel. In those
approaches the integral limits arise from momentum con-
servation, but here they were in place from the beginning.
The appearance of the “sð1 − sÞ” factors is also typical of
lightfront wavefunctions [70–72].
Collecting factors, we find the near-final result

T ¼−ð2πÞ3δ⊥;−ðl0− lÞ α
2π

Z
dϕ

Z
∞

0

dθ
θ

×I1

�
θM2

n:l

�
ϵ0:ðaðϕþθ=2Þ− haiÞϵ:ðaðϕ−θ=2Þ− haiÞ:

ð23Þ

To compactify notation we define

A ≔ ϵ:hai; Ā ≔ ϵ0:hai; Aθ ≔ ∂θA;

Aϕ ≔ ∂ϕA; ð24Þ

and so on. With this and the results

�ϵ:ðaðϕ� θ=2Þ − haiÞ ¼ θ

�
1

2
Aϕ � Aθ

�
; ð25Þ

we can write our amplitude in the form

T ¼ −ð2πÞ3δ⊥;−ðl − l0Þn:lMscalar: ð26Þ
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To obtain the probability we take the modulus squared of
(26) and integrate over final states. This integral converts
one factor of ð2πÞ3δ3 into a 1=n:l, while the second delta
function is regularized by including a photon wavepacket
from the beginning, and gives a second factor of 1=n:l; see
[73]. Hence we obtain Pflip ¼ jMflipj2 or, explicitly,

Pflip;scalar ¼
���� α2π

1

n:l

Z
∞

−∞
dϕ

Z
∞

0

dθ θI1

�
θM2

n:l

�

×

�
Āθ þ

1

2
Āϕ

��
Aθ −

1

2
Aϕ

�����
2

; ð27Þ

which is rather compact, and of the same form as the spinor
QED result found in [20] using lightfront methods. The two
remaining integrals over the lightfront times ϕ and θ can be
performed analytically only for special cases (but then one
must give up performing the s-integral exactly [74]), and in
general must be tackled numerically. For examples and
details of the numerical method of integration see [20].

A. Analyticity

In evaluating the contraction ~JμG ~Jμ in (14) to obtain (17)
there arises a term

Z
1

0

dτ _yþcl aðxþc þ yþclÞ: ð28Þ

This integral is exact and, by the boundary conditions,
vanishes, provided that the potential a is an integrable
function without singularities. This is of course natural, and
we remark only that similar terms appear in worldline
instanton calculations of pair production, see e.g. [50] and
the discussion of the argument principle in [49].

B. Zero modes

As our results parallel those found using lightfront
quantization we should comment on the appearance of
lightfront zero modes in this formalism. Zero modes are
states for which the momentum component p− ¼ 0, and
there is a vast literature on the role they play and the
problems they can cause through the appearance of 1=p−
factors; see [71,72] and references therein. For this dis-
cussion it is enough to check that the zero modes do not
introduce divergences into our calculations [20,21].
The change of variable (20) may look suspect when

s ∈ f0; 1g, that is when σ ¼ σ0, fσ ¼ 1; σ0 ¼ 0g, or
fσ0 ¼ 1; σ ¼ 0g. For these values the vertex operators lie
at the same position on the worldline. Now, we have
already identified that s corresponds to the momentum
fraction p−=l− flowing around the loop. From the right-
hand diagram in Fig. 1 this means that s ¼ 0, 1 corresponds
to a zero mode flowing through the upper or lower portion
of the loop, respectively. We observe that yþcl → 0 at these
points, which implies that the background field vanishes

from ~J in (14), and we return to the free theory, where the
helicity-flip amplitude must vanish. This suggests that we
should not expect problems from such points. Indeed it is
seen directly that there are no singularities in (17) as
s → f0; 1g, so the zero modes do not cause problems. Also
as expected, using that yþcl → 0 and that haμi → aμðxþc Þ
from (19), the vertex operator insertions vanish in (17) so
that there is no contribution to the flip probability from the
zero modes.

III. SPINOR QED

We now turn to the helicity-flip amplitude in spinor
QED. Spin contributions are included by inserting a “spin
factor” into the scalar worldline integral, of form [31,37,38]

Spin ¼ 1

4
trP exp

�
−
iT
4

Z
1

0

dτ σμνF μν

�
; ð29Þ

where the fieldstrength F μν contains both the background
and scattered photons (definition below), σμν ¼ i

2
½γμ; γν�,

the trace is over the Dirac matrices, and P stands for path-
ordering. (We define Spin with an extra factor of 1=4
compared to [37], and we work in Minkowski rather than
Euclidean space.) It is sometimes more convenient to
rewrite Spin as a path integral over Grassmann variables
on the worldline; doing so makes explicit a worldline
supersymmetry [75], the use of which in worldline calcu-
lations is reviewed in [38]. Another method for evaluating
the Grassmann integral, for arbitrary background fields, is
presented in [76]. There the Grassmann fields are integrated
out without approximation to obtain a worldline path
integral for spinor QED which depends only on the
worldline coordinates, as for sQED. Here we will first
consider the form (29), since only a few terms in the
expansion of the exponent are nonzero, but we will also use
the Grassmann approach, below. (The form (29) was also
used in [40] to obtain the spinor contribution to pair
production.)

A. Feynman’s Dirac-trace approach

The helicity flip amplitude in QED is

T flip ¼−2e2
Z

∞

0

dT
T

×
I

Dxexp
�
−im2

T
2
− i

Z
1

0

dτ
_x2

2T
þA:_x

�
Spin; ð30Þ

where Aμ ¼ aμ þ ϵμe−il:x þ ϵ0μeil
0:x, and the fieldstrength

F in the spin factor is F μν ¼ ∂μAν − ∂νAμ. As before we
retain only those terms which are linear in both ϵ and ϵ0.
Note that (30) is obtained from the sQED expression (3)
by inserting the spin-factor (29) and multiplying by minus
two.
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We begin by expanding out the exponential in the spin
factor, using

−
i
2
σμνF μν ¼ na0 − ilϵe−il:x þ il0ϵ 0eil0:x: ð31Þ

Only a few of the terms are nonzero because of our chosen
background and process. An analogous truncation of terms
occurswhen one solves the Lorentz force equation in a plane
wave: a path-ordered exponential truncates at second order
because the field strength Fμν is nilpotent of order three.
When selecting the terms that are linear in ϵ and ϵ0 it is

convenient to separate the total amplitude into three parts,
writing T flip ¼ T0 þ T1 þ T 2. The term T 0 is identical to
the amplitude in sQED up to the factor of −2, and receives
both ϵ and ϵ0 from the A:_x term in (30). The term T 1

receives one of the polarization vectors from A:_x and the
other from Spin. The term T2 receives both ϵ and ϵ0 from
Spin. Writing arguments as subscripts to compactify
notation, the spinor contribution to T1 is obtained from

1

4
tr
Z

1

0

dτ2dτ1θðτ2 − τ1Þ
T2

4
ðna0 − ilϵe−il:x þ il 0ϵ 0eil0:xÞτ2

× ðna0 − ilϵe−il:x þ il 0ϵ 0eil0:xÞτ1 ; ð32Þ
and the spinor contribution to T2 is obtained from

1

4
tr
Z

1

0

dτ4321θ4321
T4

16
ðna0 − ilϵe−il:x þ il 0ϵ 0eil0:xÞτ4

× ð…Þτ3ð…Þτ2ð…Þτ1 ; ð33Þ
where θ4321 ¼ θðτ4 − τ3Þθðτ3 − τ2Þθðτ2 − τ1Þ. After per-
forming the traces the three “partial amplitudes” T i can
be written in terms of the same current J as in (6) as

T i ¼ −2e2
Z

∞

0

dT
T

e−iTm
2=2

×
I

Dx Ii exp
�
−i

Z
1

0

_x2

2T
þ a:_xþ J:x

�
; ð34Þ

where the three integrands Ii are, writing “linϵ” for the
instruction to select the term linear in ϵ,

I0 ¼ −
Z

1

0

dσdσ0linϵlinϵ0 ; ð35Þ

I1¼
iT2

4

Z
1

0

dσdσ0
�
n:l

Z
1

0

dτϵ:a0linϵ0 þn:l0
Z

1

0

dτϵ0:a0linϵ

�
;

ð36Þ

I2 ¼ n:ln:l0
T4

8

Z
1

0

dτ4321
���
τ3¼σ;τ1¼σ0

× ðθ4321 þ θ2143 þ θ3214 þ θ1432Þðϵ:a0
4
ϵ0:a0

2
þ ϵ:a0

2
ϵ0:a0

4
Þ:

ð37Þ

All explicit reference to spinors has now been eliminated,
and we are left with a worldline integral over the coor-
dinates, as in [76]. The integral can be performed with the
same method as for the scalar case, above. T 0 is the same as
in sQED up to a factor of −2:

T0 ¼ ð2πÞ3δ−;⊥ðl0 − lÞ α
π

Z
dϕ

Z
∞

0

dθθ

×
Z

1

0

ds
�
Āθ þ

1

2
Āϕ

��
Aθ −

1

2
Aϕ

�
e−

iθM2

2n:psð1−sÞ: ð38Þ

For T1 we use

Z
1

0

dτf0ðxþ þ yþclðτ; σ; σ0ÞÞ ¼
1

θ

Z
ϕþθ=2

ϕ−θ=2
dφf0ðφÞ ¼ hfiϕ;

ð39Þ

and that the integrand again depends only on the combi-
nation sð1 − sÞ with s ¼ jσ − σ0j. This gives

T 1 ¼ ð2πÞ3δ−;⊥ðl0 − lÞ α

4π

Z
dϕ

Z
∞

0

dθθ

×
Z

1

0

ds
sð1 − sÞ ð−Ā½ϕAθ� þ ĀϕAϕÞe−

iθM2

2n:psð1−sÞ: ð40Þ

The term T2 is more complicated. By using the symmetry
τ4 ↔ τ2 and τ3 ↔ τ1 (σ ↔ σ0) we can write

I2 ¼ n:l2
T4

4

Z
1

0

dτ4321ðθ4321 þ θ3214Þðϵ:a0
4
ϵ0:a0

2
þ ðϵ↔ ϵ0ÞÞ:

ð41Þ

Next we use the explicit solution yþclðτ; σ; σ0Þ (recall τ3 ¼ σ
and τ1 ¼ σ0) to perform the integrals over τ2 and τ4,

Z
τ3

τ1

dτ2a0ðxþ þ yþclÞ ¼ shaiϕ;
Z

τ1

0

dτ4a0ðxþ þ yþclÞ þ
Z

1

τ3

dτ4a0ðxþ þ yþclÞ ¼ ð1 − sÞhaiϕ:

ð42Þ

The integrand for the remaining integrals over σ and σ0
again only depends on sð1 − sÞ, except for a factor of θ31
which simply gives a factor of 1=2. The final result for T2 is

T 2 ¼ −ð2πÞ3δ−;⊥ðl0 − lÞ α

4π

Z
dϕ

Z
∞

0

dθθ

×
Z

1

0

ds
sð1 − sÞ ĀϕAϕe

− iθM2

2n:psð1−sÞ: ð43Þ

Note that (43) is cancelled entirely by a similar term in (40).
The integrals over s give either I1 introduced in (22) or
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I2ðxÞ ≔
Z

1

0

ds
2sð1 − sÞ exp

�
−i

x
2sð1 − sÞ

�

¼ e−ixK0ðixÞ: ð44Þ

Adding the three contributions (38), (40) and (43) together
we find

T flip ¼ ð2πÞ3δ−;⊥ðl0 − lÞ α
π

Z
dϕ

Z
∞

0

dθθ

×

��
Āθ þ

1

2
Āϕ

��
Aθ −

1

2
Aϕ

�
I1 −

1

2
Ā½ϕAθ�I2

�

¼ ð2πÞ3δ⊥;−ðl − l0Þn:lMspinor; ð45Þ

in exact agreement with the results in [20] found using
lightfront quantization and standard Feynman diagram
methods. Squaring the amplitude yields, as above,
P ¼ jMj2, with

Pflip;spinor ¼
���� απ

1

n:l

Z
∞

−∞
dϕ

Z
∞

0

dθθ

×

�
I1

�
θM2

n:l

��
Āθ þ

1

2
Āϕ

��
Aθ −

1

2
Aϕ

�

−
1

2
I2

�
θM2

n:l

�
Ā½ϕAθ�

������
2

: ð46Þ

B. Grassmann approach

The spin factor (29) can be expressed as a path integral
over anticommuting Grassmann variables ψμ [37] (replace
T in that paper by iT=2 to go to our conventions),

Spin ¼ 1

4

Z
Dψ exp

�
−
1

2

Z
1

0

ψμ _ψ
μ þ TψμF μνψ

ν

�
; ð47Þ

and the integral is calculated with antiperiodic boundary
conditions ψð1Þ ¼ −ψð0Þ. We begin by expanding the
exponential in the polarization vectors. This gives three
terms, as above. The next step is to remove the gauge field
from the action via the change of variable

ψμðτÞ → ψμðτÞ − Tnμ
Z

1

0

dτ0GFðτ − τ0Þa0:ψ ;

GFðτ − τ0Þ ¼ 1

2
signðτ − τ0Þ: ð48Þ

Note that only ψ− is changed, and that only ψ⊥ appears
under the integral in (48). After this change of variable the
exponent appearing in our amplitude becomes that of the
free theory:

Spin ¼ 1

4

Z
Dψ

�
1− iTJ −

1

2
T2J 2

�
exp

�
−
1

2

Z
1

0

ψμ _ψ
μ

�
;

J ≔
Z

1

0

dτdτ0ðψμðτÞ − TnμGFðτ − τ0Þa0:ψðτ0ÞÞ

× ðl0μϵ0νeil0:xðτÞ − lμϵνe−il:xðτÞÞψνðτÞ: ð49Þ

(The same change of variables in the effective action
would remove all dependence on the field, turning it into
the effective action of the free theory; this is because there
is no Schwinger pair production in a plane wave.) The
Grassmann integral can now be performed using the same
Wick contractions as in the free theory [37]. This is trivial
for the first term in (49), and a straightforward calculation
shows that the second term agrees with that obtained by
performing the trace in (32). The third term in (49) requires
a longer calculation. At an intermediate step, one finds

T4n:l2

16

Z
1

0

dτ4321e−il:xðτ3Þeil
0:xðτ1Þϵ:a0

2
ϵ0:a0

4

× ð1 − 16GF
43G

F
32G

F
21G

F
14Þ: ð50Þ

By writing GF
ij ¼ θij − θji and using that θij þ θji ¼ 1 one

can show that (50) is equal to (37), and one recovers (34).
The rest of the calculation is identical to that above.

IV. DISCUSSION AND CONCLUSIONS

We have derived the photon helicity-flip probability in
inhomogeneous plane wave backgrounds using the world-
line formalism. The calculation was performed to one loop,
but exactly in all other parameters. The calculation in scalar
QED is direct and the final result compact. Both this and the
QED calculation recover the expressions previously found
using lightfront methods, thus our results also serve to
confirm the advantages of this approach to strong field
QED [14].
The sQED calculation does seem simpler in the world-

line formalism than in approaches based on the Volkov
solution, and so offers a promising tool for the calculation
of other processes, including for example multiphoton
emission: by combining the methods presented here with
those in [53,77] it should be possible to obtain useful
expressions for the n-photon emission amplitudes, for
arbitrarily high n. It is fair to say that the calculation of
spin contributions is involved. Nevertheless, we have seen
that two different methods can be applied, and one or the
other may offer simplifications depending on the process in
question. For the problem here, using the Dirac trace is
simpler than using a Grassmann integral: there are fewer
steps with the former, even though the calculations as a
whole are very similar.
We have seen that the semiclassical approximation to our

worldline integrals remains exact, even though the back-
ground is inhomogeneous. This provides a simple recipe
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for the calculation of other processes: (1) exponentiate
the vertex operators to obtain the source, (2) evaluate the
classical action on the classical path, (3) reexpand the
vertex operators. Finally, (4) compute as many integrals as
possible. The calculation of the classical path will go
through as above with the appropriate source and propa-
gator: one first solves for xþ, and then for x⊥. This method
should hold for all processes in plane wave backgrounds.
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APPENDIX: CONVENTIONS

The reparameterisation-invariant measure over the
worldline coordinates is [78,79]

I
Dx ¼

ffiffiffiffi
T

p Z
dxc

I
Dy; ðA1Þ

in which xc is the center-of-mass of the loop, y is the
nonconstant and oscillatory part of the closed path, and the
factor of

ffiffiffiffi
T

p
arises from changing variable from the Fourier

zero mode of the loop to xc. In four dimensions the measure
obeys

I
Dx exp

�
−

i
2T

Z
1

0

dτ _x2
�
¼ ð2πTÞ−2

Z
d4xc; ðA2Þ

with the final integral giving the spacetime volume. The
fermionic path integral measure is, in four dimensions,
normalized to [37]

Z
Dψ exp

�
−
1

2

Z
1

0

dτψμ _ψ
μ

�
¼ 4 ðA3Þ

and is calculated with antiperiodic boundary conditions
ψð1Þ ¼ −ψð0Þ.
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