131 research outputs found

    Preparation of characterization of core-shell nanoparticles hardened by gamma-ray

    Get PDF
    Core-shell nanoparticles have been prepared by irradiation of gamma-ray on block copolymer micelles consisting of hydrophilic polyacrylic acid and hydrophobic polyisoprene with each 40 monomer units. The structure was determined by means of dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The size distribution of the core-shell nanoparticles determined by DLS and AFM was very narrow. The average diameter of the particles decreased from 48 nm for the original micelles to 26 nm by the irradiation of 30 kGy. The core size determined by SAXS combined with DLS was roughly constant of 10 nm, irrespective of irradiation dose, whereas the shell thickness of the micelles was twice as large as core size, and decreased with increasing irradiation dose

    The Hammett correlation between distyrylbenzene substituents and chemiluminescence efficiency providing various ρ-values for peroxyoxalate chemiluminescence of several oxalates

    Get PDF
    Peroxyoxalate chemiluminescence (PO-CL) was investigated using eight oxalates with various phenol moieties and the distyrylbenzene (DSB) fluorophores with various substituents. The ρ-values in the Hammett correlation between the substituent constants (σp+) of the DSBs and the singlet chemiexcitation yields (ΦS) for the PO-CL reactions varied from −0.50 to −1.01 depending on the oxalate structure, and the reactive oxalates tended to afford the higher absolute ρ-values but with a few exceptions. Based on the CIEEL mechanism, these experimental observations suggest that the aryloxy groups still remain in the 1,2-dioxetanones (DOTs), which are the postulated high-energy intermediates, and control the electronic properties of DOTs as electron-acceptors. The LUMO energies of the DOTs calculated by the ab initio method with a B3LYP/6-31g(d) basis set reveal that the lower the DOT-LUMO energies, the higher the absolute ρ-values were provided for the corresponding oxalates, as predicted by the frontier molecular orbital (FMO) theory. Thus, the chemical species interacting with the DSBs would be not unitary and will be DOTs.ArticleJournal of Photochemistry and Photobiology A: Chemistry. 252:222-231 (2013)journal articl

    Re-entrant volume phase transition of hydrogel membrane of microcapsule

    Get PDF
    Reentrant volume phase transition of hydrogel wall membrane of microcapsules (MC) was first observed using MC suspensions consisting of poly(L-lysine-alt-terephthalic acid) wall and aqueous inner and outer solutions with different pHs. To analyze the dynamics of the reentrant phase transition, we extended the theory for the swelling and the shrinking dynamics of the microcapsule gel (Langmuir 2003, 19, 4051-4054). In the theory, the microcapsule size and the force constant for the driving force which give rise to the size relaxation were chosen as the thermodynamic variables. The time course of the cross-sectional area of the microcapsules fitted well to the theoretical equations, and the time constants determined as the fitting parameters were discussed in terms of the force constant relaxation and the size relaxation

    Vision-Based Displacement Sensor for Monitoring Dynamic Response Using Robust Object Search Algorithm

    Get PDF
    This paper develops a vision-based displacement measurement system for remote monitoring of vibration of large-size structures such as bridges and buildings. The system consists of one or multiple video cameras and a notebook computer. With a telescopic lens, the camera placed at a stationary point away from a structure captures images of an object on the structure. The structural displacement is computed in real time through processing the captured images. A robust object search algorithm developed in this paper enables accurate measurement of the displacement by tracking existing features on the structure without requiring a conventional target panel to be installed on the structure. A sub-pixel technique is also proposed to further reduce measurement errors cost-effectively. The efficacy of the vision system in remote measurement of dynamic displacements was demonstrated through a shaking table test and a field experiment on a long-span bridge

    Lack of Inertia Force of Late Systolic Aortic Flow Is a Cause of Left Ventricular Isolated Diastolic Dysfunction in Patients With Coronary Artery Disease

    Get PDF
    ObjectivesWe investigated whether a lack of inertia force of late systolic aortic flow and/or apical asynergy provoke early diastolic dysfunction in patients with coronary artery disease (CAD).BackgroundLeft ventricular (LV) isolated diastolic dysfunction is a well-recognized cause of heart failure.MethodsWe evaluated LV apical wall motion and obtained left ventricular ejection fraction (LVEF) by left ventriculography in 101 patients who underwent cardiac catheterization to assess CAD. We also computed the LV relaxation time constant (Tp) and the inertia force of late systolic aortic flow from the LV pressure (P)–first derivative of left ventricular pressure (dP/dt) relation. Using color Doppler echocardiography, we measured the propagation velocity of LV early diastolic filling flow (Vp). Patients with LVEF ≥50% (preserved systolic function [PSF], n = 83) were divided into 2 subgroups: patients with inertia force (n = 53) and without inertia force (n = 30). No patient with systolic dysfunction (SDF) (LVEF <50%) had inertia force (n = 18).ResultsThe Tp was significantly longer in patients with SDF (85.7 ± 21.0 ms) and with PSF without inertia force (81.1 ± 23.6 ms) than in those with PSF with inertia force (66.3 ± 12.8 ms) (p< 0.001). The Vp was significantly less in the former 2 groups than in the last group. In patients with PSF, LV apical wall motion abnormality was less frequently observed in those with inertia force than in those without (p < 0.0001).ConclusionsAn absence of inertia force in patients with PSF is one of the causes of isolated diastolic dysfunction in patients with CAD. Normal LV apical wall motion is substantial enough to give inertia to late systolic aortic flow

    Structures and mechanisms of actin ATP hydrolysis

    Get PDF
    The major cytoskeleton protein actin undergoes cyclic transitions between the monomeric G-form and the filamentous F-form, which drive organelle transport and cell motility. This mechanical work is driven by the ATPase activity at the catalytic site in the F-form. For deeper understanding of the actin cellular functions, the reaction mechanism must be elucidated. Here, we show that a single actin molecule is trapped in the F-form by fragmin domain-1 binding and present their crystal structures in the ATP analog-, ADP-Pi-, and ADP-bound forms, at 1.15-Å resolutions. The G-to-F conformational transition shifts the side chains of Gln137 and His161, which relocate four water molecules including W1 (attacking water) and W2 (helping water) to facilitate the hydrolysis. By applying quantum mechanics/molecular mechanics calculations to the structures, we have revealed a consistent and comprehensive reaction path of ATP hydrolysis by the F-form actin. The reaction path consists of four steps: 1) W1 and W2 rotations; 2) PG–O3B bond cleavage; 3) four concomitant events: W1–PO3− formation, OH− and proton cleavage, nucleophilic attack by the OH− against PG, and the abstracted proton transfer; and 4) proton relocation that stabilizes the ADP-Pi–bound F-form actin. The mechanism explains the slow rate of ATP hydrolysis by actin and the irreversibility of the hydrolysis reaction. While the catalytic strategy of actin ATP hydrolysis is essentially the same as those of motor proteins like myosin, the process after the hydrolysis is distinct and discussed in terms of Pi release, F-form destabilization, and global conformational changes

    Host Prostaglandin E2-EP3 Signaling Regulates Tumor-Associated Angiogenesis and Tumor Growth

    Get PDF
    Nonsteroidal antiinflammatories are known to suppress incidence and progression of malignancies including colorectal cancers. However, the precise mechanism of this action remains unknown. Using prostaglandin (PG) receptor knockout mice, we have evaluated a role of PGs in tumor-associated angiogenesis and tumor growth, and identified PG receptors involved. Sarcoma-180 cells implanted in wild-type (WT) mice formed a tumor with extensive angiogenesis, which was greatly suppressed by specific inhibitors for cyclooxygenase (COX)-2 but not for COX-1. Angiogenesis in sponge implantation model, which can mimic tumor-stromal angiogenesis, was markedly suppressed in mice lacking EP3 (EP3−/−) with reduced expression of vascular endothelial growth factor (VEGF) around the sponge implants. Further, implanted tumor growth (sarcoma-180, Lewis lung carcinoma) was markedly suppressed in EP3−/−, in which tumor-associated angiogenesis was also reduced. Immunohistochemical analysis revealed that major VEGF-expressing cells in the stroma were CD3/Mac-1 double-negative fibroblasts, and that VEGF-expression in the stroma was markedly reduced in EP3−/−, compared with WT. Application of an EP3 receptor antagonist inhibited tumor growth and angiogenesis in WT, but not in EP3−/−. These results demonstrate significance of host stromal PGE2-EP3 receptor signaling in tumor development and angiogenesis. An EP3 receptor antagonist may be a candidate of chemopreventive agents effective for malignant tumors

    The Lipid-Binding Defective Dynamin 2 Mutant in Charcot-Marie-Tooth Disease Impairs Proper Actin Bundling and Actin Organization in Glomerular Podocytes

    Get PDF
    Dynamin is an endocytic protein that functions in vesicle formation by scission of invaginated membranes. Dynamin maintains the structure of foot processes in glomerular podocytes by directly and indirectly interacting with actin filaments. However, molecular mechanisms underlying dynamin-mediated actin regulation are largely unknown. Here, biochemical and cell biological experiments were conducted to uncover how dynamin modulates interactions between membranes and actin in human podocytes. Actin-bundling, membrane tubulating, and GTPase activities of dynamin were examined in vitro using recombinant dynamin 2-wild-type (WT) or dynamin 2-K562E, which is a mutant found in Charcot-Marie-Tooth patients. Dynamin 2-WT and dynamin 2-K562E led to the formation of prominent actin bundles with constant diameters. Whereas liposomes incubated with dynamin 2-WT resulted in tubule formation, dynamin 2-K562E reduced tubulation. Actin filaments and liposomes stimulated dynamin 2-WT GTPase activity by 6- and 20-fold, respectively. Actin-filaments, but not liposomes, stimulated dynamin 2-K562E GTPase activity by 4-fold. Self-assembly-dependent GTPase activity of dynamin 2-K562E was reduced to one-third compared to that of dynamin 2-WT. Incubation of liposomes and actin with dynamin 2-WT led to the formation of thick actin bundles, which often bound to liposomes. The interaction between lipid membranes and actin bundles by dynamin 2-K562E was lower than that by dynamin 2-WT. Dynamin 2-WT partially colocalized with stress fibers and actin bundles based on double immunofluorescence of human podocytes. Dynamin 2-K562E expression resulted in decreased stress fiber density and the formation of aberrant actin clusters. Dynamin 2-K562E colocalized with alpha-actinin-4 in aberrant actin clusters. Reformation of stress fibers after cytochalasin D-induced actin depolymerization and washout was less effective in dynamin 2-K562E-expressing cells than that in dynamin 2-WT. Bis-T-23, a dynamin self-assembly enhancer, was unable to rescue the decreased focal adhesion numbers and reduced stress fiber density induced by dynamin 2-K562E expression. These results suggest that the low affinity of the K562E mutant for lipid membranes, and atypical self-assembling properties, lead to actin disorganization in HPCs. Moreover, lipid-binding and self-assembly of dynamin 2 along actin filaments are required for podocyte morphology and functions. Finally, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in HPCs

    Physical properties of the Dome Fuji deep ice core (review)

    Get PDF
    Recent results of physical analyses of the Dome Fuji ice core are summarized with special attention to new methods introduced in the present studies. Microphysical processes which affect the ice core records are reviewed to better understand the paleoclimatic and paleoenvironmental signals stored
    corecore