470 research outputs found

    Investigation of evolution strategy and optimization of induction heating model

    Get PDF
    An optimal design method using the finite element method and the evolution strategy (ES) is investigated. The evolution strategy is applied to the optimization of induction heating model. The position of auxiliary coil, frequency and ampere-turns are optimized so that the distribution of eddy current density on the surface of steel becomes uniform. It is shown that the selection of the appropriate parameter is important in the practical application of ES</p

    Lineage-Specific Duplication and Loss of Pepsinogen Genes in Hominoid Evolution

    Get PDF
    Fourteen different pepsinogen-A cDNAs and one pepsinogen-C cDNA have been cloned from gastric mucosa of the orangutan, Pongo pygmaeus. Encoded pepsinogens A were classified into two groups, i.e., types A1 and A2, which are different in acidic character. The occurrence of 9 and 5 alleles of A1 and A2 genes (at least 5 and 3 loci), respectively was anticipated. Respective orthologous genes are present in the chimpanzee genome although their copy numbers are much smaller than those of the orangutan genes. Only A1 genes are present in the human probably due to the loss of the A2 gene. Molecular phylogenetic analyses showed that A1 and A2 genes diverged before the speciation of great hominoids. Further reduplications of respective genes occurred several times in the orangutan lineage, with much higher frequencies than those occurred in the chimpanzee and human lineages. The rates of non-synonymous substitutions were higher than those of synonymous ones in the lineage of A2 genes, implying the contribution of the positive selection on the encoded enzymes. Several sites of pepsin moieties were indeed found to be under positive selection, and most of them locate on the surface of the molecule, being involved in the conformational flexibility. Deduced from the known genomic structures of pepsinogen-A genes of primates and other mammals, the duplication/loss were frequent during their evolution. The extreme multiplication in the orangutan might be advantageous for digestion of herbaceous foods due to the increase in the level of enzymes in stomach and the diversification of enzyme specificit

    Progenitor constraint with circumstellar material for the magnetar-hosting supernova remnant RCW 103

    Get PDF
    Stellar winds blown out from massive stars (10M\gtrsim 10M_{\odot}) contain precious information on the progenitor itself, and in this context, the most important elements are carbon (C), nitrogen (N), and oxygen (O), which are produced by the CNO cycle in the H-burning layer. Although their X-ray fluorescence lines are expected to be detected in swept-up shock-heated circumstellar materials (CSMs) in supernova remnants (SNRs), particularly those of C and N have been difficult to detect so far. Here, we present a high-resolution spectroscopy of a young magnetar-hosting SNR RCW~103 with the Reflection Grating Spectrometer (RGS) onboard XMM-Newton and report on the detection of \ion{N}{7} Lyα\alpha (0.50~keV) line for the first time. By comparing the obtained abundance ratio of N to O (N/O=3.8±0.1=3.8 \pm{0.1}) with various stellar evolution models, we show that the progenitor of RCW~103 is likely to have a low-mass (10--12~MM_{\odot}) and medium-rotation velocities (100 km s1\lesssim 100~\rm{km~s^{-1}}). The results also rule out the possibility of dynamo effects in massive (35 M\geq35~M_{\odot}) stars as a formation mechanism of the associated magnetar 1E~161348-5055. Our method is useful for estimating various progenitor parameters for future missions with microcalorimeters such as XRISM and Athena.Comment: Accepted for publication in ApJ. 11 pages, 8 figure

    Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting

    Get PDF
    Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5′ region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation
    corecore