5 research outputs found
Spaceborne Lidar for Estimating Forest Biophysical Parameters
The Ice, Cloud and land Elevation Satellite-2 (ICESat-2) was launched on September 15th, 2018 and while this mission primarily serves to capture ice topography measurements of the earth’s surface, it also offers a phenomenal opportunity to estimate biophysical forest parameters at multiple spatial scales. This study served to develop approaches for utilizing ICESat-2 data over vegetated areas. The main objectives were to: (1) derive a simulated ICESat-2 photon-counting lidar (PCL) vegetation product using airborne lidar data and examine the use of simulated PCL metrics for modeling AGB and canopy cover, (2) create wall-to-wall AGB maps at 30-m spatial resolution and characterize AGB uncertainty by using simulated PCL-estimated AGB and predictor variables from Landsat data and derived products, and (3) investigate deep learning (DL) neural networks for producing an AGB product with ICESat-2, using simulated PCL-estimated AGB Landsat imagery, canopy cover and land cover maps. The study was carried out in Sam Houston National Forest located in south-east Texas, using existing airborne lidar data and known ICESat-2 track locations for the first two years of the mission. Three scenarios were analyzed; 1) simulated data without the addition of noise, 2) processed simulated data for nighttime and 3) daytime scenarios. AGB model testing with no noise, nighttime and daytime scenarios resulted in R^2 values of 0.79, 0.79 and 0.63 respectively, with root mean square error (RMSE) values of 19.16 Mg/ha, 19.23 Mg/ha, and 25.35 Mg/ha. Canopy cover (4.6 m) models achieved R^2 values of 0.93, 0.75 and 0.63 and RMSE values of 6.36%, 12.33% and 15.01% for the no noise, nighttime and daytime scenarios respectively. Random Forest (RF) and deep neural network (DNN) models used with predicted AGB estimates and the mapped predictors exhibited moderate accuracies (0.42 to 0.51) with RMSE values between 19 Mg/ha to 20 Mg/ha. Overall, findings from this study suggest the potential of ICESat-2 for estimating AGB and canopy cover and generating a wall-to-wall AGB product by adopting a combinatory approach with spectral metrics derived from Landsat optical imagery, canopy cover and land cover
Spaceborne Lidar for Estimating Forest Biophysical Parameters
The Ice, Cloud and land Elevation Satellite-2 (ICESat-2) was launched on September 15th, 2018 and while this mission primarily serves to capture ice topography measurements of the earth’s surface, it also offers a phenomenal opportunity to estimate biophysical forest parameters at multiple spatial scales. This study served to develop approaches for utilizing ICESat-2 data over vegetated areas. The main objectives were to: (1) derive a simulated ICESat-2 photon-counting lidar (PCL) vegetation product using airborne lidar data and examine the use of simulated PCL metrics for modeling AGB and canopy cover, (2) create wall-to-wall AGB maps at 30-m spatial resolution and characterize AGB uncertainty by using simulated PCL-estimated AGB and predictor variables from Landsat data and derived products, and (3) investigate deep learning (DL) neural networks for producing an AGB product with ICESat-2, using simulated PCL-estimated AGB Landsat imagery, canopy cover and land cover maps. The study was carried out in Sam Houston National Forest located in south-east Texas, using existing airborne lidar data and known ICESat-2 track locations for the first two years of the mission. Three scenarios were analyzed; 1) simulated data without the addition of noise, 2) processed simulated data for nighttime and 3) daytime scenarios. AGB model testing with no noise, nighttime and daytime scenarios resulted in R^2 values of 0.79, 0.79 and 0.63 respectively, with root mean square error (RMSE) values of 19.16 Mg/ha, 19.23 Mg/ha, and 25.35 Mg/ha. Canopy cover (4.6 m) models achieved R^2 values of 0.93, 0.75 and 0.63 and RMSE values of 6.36%, 12.33% and 15.01% for the no noise, nighttime and daytime scenarios respectively. Random Forest (RF) and deep neural network (DNN) models used with predicted AGB estimates and the mapped predictors exhibited moderate accuracies (0.42 to 0.51) with RMSE values between 19 Mg/ha to 20 Mg/ha. Overall, findings from this study suggest the potential of ICESat-2 for estimating AGB and canopy cover and generating a wall-to-wall AGB product by adopting a combinatory approach with spectral metrics derived from Landsat optical imagery, canopy cover and land cover
Spaceborne Lidar for Estimating Forest Biophysical Parameters
The Ice, Cloud and land Elevation Satellite-2 (ICESat-2) was launched on September 15th, 2018 and while this mission primarily serves to capture ice topography measurements of the earth’s surface, it also offers a phenomenal opportunity to estimate biophysical forest parameters at multiple spatial scales. This study served to develop approaches for utilizing ICESat-2 data over vegetated areas. The main objectives were to: (1) derive a simulated ICESat-2 photon-counting lidar (PCL) vegetation product using airborne lidar data and examine the use of simulated PCL metrics for modeling AGB and canopy cover, (2) create wall-to-wall AGB maps at 30-m spatial resolution and characterize AGB uncertainty by using simulated PCL-estimated AGB and predictor variables from Landsat data and derived products, and (3) investigate deep learning (DL) neural networks for producing an AGB product with ICESat-2, using simulated PCL-estimated AGB Landsat imagery, canopy cover and land cover maps. The study was carried out in Sam Houston National Forest located in south-east Texas, using existing airborne lidar data and known ICESat-2 track locations for the first two years of the mission. Three scenarios were analyzed; 1) simulated data without the addition of noise, 2) processed simulated data for nighttime and 3) daytime scenarios. AGB model testing with no noise, nighttime and daytime scenarios resulted in R^2 values of 0.79, 0.79 and 0.63 respectively, with root mean square error (RMSE) values of 19.16 Mg/ha, 19.23 Mg/ha, and 25.35 Mg/ha. Canopy cover (4.6 m) models achieved R^2 values of 0.93, 0.75 and 0.63 and RMSE values of 6.36%, 12.33% and 15.01% for the no noise, nighttime and daytime scenarios respectively. Random Forest (RF) and deep neural network (DNN) models used with predicted AGB estimates and the mapped predictors exhibited moderate accuracies (0.42 to 0.51) with RMSE values between 19 Mg/ha to 20 Mg/ha. Overall, findings from this study suggest the potential of ICESat-2 for estimating AGB and canopy cover and generating a wall-to-wall AGB product by adopting a combinatory approach with spectral metrics derived from Landsat optical imagery, canopy cover and land cover
Woody Biomass Availability for Energy: A Perspective from Non-Industrial Private Forest Landowners in the U.S. Great Lakes States
Non-industrial private forest (NIPF) landowners control 58% of all forests in the U.S. Great Lakes States consisting of Michigan, Minnesota and Wisconsin. A regional assessment of the availability of woody biomass for bioenergy will therefore be incomprehensive without a consideration of supply from the most dominant ownership group. This study aimed to evaluate the social availability of woody biomass for renewable energy in the U.S. Great Lakes States by examining NIPF landowners’ willingness-to-harvest (WTH) their woodlands. Following the Tailored Design Method, surveys were mailed to 4,190 NIPF landowners from Michigan, Minnesota and Wisconsin. Results identified two latent factors summarizing landowners’ bioenergy perceptions: (a) bioenergy support and (b) environmental degradation and four latent factors behind woodland ownership: (a) amenity, (b) personal use, (c) production and (d) legacy. A two-step cluster analysis approach was used to construct a landowner typology for the region based on landowners’ bioenergy views and reasons for woodland ownership. Four types of landowners were consequently identified: recreationist, indifferent, preservationist and multiple-objective. Recreationists were found to own the majority or 51% of the total woodlands reported by sample respondents and were also most willing to harvest their woodlands with an estimated 38% potentially available for timber harvest and 46% for biomass harvest. A comparison of WTH by landowner type and state revealed that the greatest level of acceptance as indicated by potential acreage availability were from recreationists owning NIPFs in Michigan. Binary logit regression models were also used to determine significant factors influencing landowners’ WTH timber and woody biomass. Findings indicated that non-timber objectives decreased the odds of harvesting and timber and biomass prices increased those odds. However, marginal probability effects of prices on WTH highlighted the substantial impact that timber price, rather than biomass price had on landowners’ choice to harvest. These results suggested that the availability of woody biomass will be contingent upon timber prices