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ABSTRACT 

 

The Ice, Cloud and land Elevation Satellite-2 (ICESat-2) was launched on 

September 15th, 2018 and while this mission primarily serves to capture ice topography 

measurements of the earth’s surface, it also offers a phenomenal opportunity to estimate 

biophysical forest parameters at multiple spatial scales. This study served to develop 

approaches for utilizing ICESat-2 data over vegetated areas. The main objectives were 

to: (1) derive a simulated ICESat-2 photon-counting lidar (PCL) vegetation product 

using airborne lidar data and examine the use of simulated PCL metrics for modeling 

AGB and canopy cover, (2) create wall-to-wall AGB maps at 30-m spatial resolution 

and characterize AGB uncertainty by using simulated PCL-estimated AGB and predictor 

variables from Landsat data and derived products, and (3) investigate deep learning (DL) 

neural networks for producing an AGB product with ICESat-2, using simulated PCL-

estimated AGB Landsat imagery, canopy cover and land cover maps. The study was 

carried out in Sam Houston National Forest located in south-east Texas, using existing 

airborne lidar data and known ICESat-2 track locations for the first two years of the 

mission.  Three scenarios were analyzed; 1) simulated data without the addition of noise, 

2) processed simulated data for nighttime and 3) daytime scenarios. AGB model testing 

with no noise, nighttime and daytime scenarios resulted in R
2
 values of 0.79, 0.79 and 

0.63 respectively, with root mean square error (RMSE) values of 19.16 Mg/ha, 19.23 

Mg/ha, and 25.35 Mg/ha. Canopy cover (4.6 m) models achieved R
2
 values of 0.93, 0.75 

and 0.63 and RMSE values of 6.36%, 12.33% and 15.01% for the no noise, nighttime 
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and daytime scenarios respectively. Random Forest (RF) and deep neural network 

(DNN) models used with predicted AGB estimates and the mapped predictors exhibited 

moderate accuracies (0.42 to 0.51) with RMSE values between 19 Mg/ha to 20 Mg/ha. 

Overall, findings from this study suggest the potential of ICESat-2 for estimating AGB 

and canopy cover and generating a wall-to-wall AGB product by adopting a 

combinatory approach with spectral metrics derived from Landsat optical imagery, 

canopy cover and land cover. 
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1. INTRODUCTION  

 

The biophysical assessment of forest resources provides critical information 

about the functioning of ecosystems and their capacity to provide goods and services to 

an increasing population (MacDicken 2015; Tewari 2016). Moreover, with increasing 

concerns about climate change, assessments of forest resources, specifically forest 

aboveground biomass (AGB), has been highlighted (Le Toan et al. 2011).  For this 

study, AGB refers to the total dry weight of the biological material of trees found above 

the ground (e.g. stem, foliage, branches) and expressed on per unit area (per hectare) 

basis (Hu et al. 2016; Jenkins et al. 2003). An estimated 50% of plant biomass is carbon 

(Drake et al. 2003), so assessments of AGB facilitate the measurement of forest carbon 

and can contribute to an improved understanding of the carbon cycle (Hall et al. 2011). 

There is a crucial need to reduce uncertainties associated with quantification and spatial 

distribution of terrestrial carbon stocks and accurate estimates of AGB or other forest 

parameters that relate to AGB like forest canopy heights, can meet this need (Le Toan et 

al. 2011; Margolis et al. 2015).   

Lidar systems are active remote sensing devices that transmit energy and record 

backscattered energy from features on the earth’s surface (Campbell and Wynne 2011). 

By measuring the time taken for laser energy to reach the surface and also return to the 

sensor and converting those times to distance measurements, three-dimensional 

biophysical attributes become obtainable (Gwenzi and Lefsky 2014; Popescu 2007). The 

data acquired by the lidar sensor can then be analyzed to derive vegetation metrics (e.g. 
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Margolis et al. 2015; Neigh et al. 2013; Nelson et al. 2017; Popescu et al. 2011). 

Spaceborne light detection and ranging (lidar) technology developed in this decade will 

offer an innovative and promising platform for the characterization and monitoring of 

AGB and forest carbon (Markus et al. 2017). With the launch of NASA’s Ice, Cloud and 

land Elevation Satellite-2 (ICESat-2) on September 15th, 2018 (NASA 2017), data from 

its laser altimeter will be available to the scientific community as early as the spring of 

2019 (Neuenschwander and Pitts 2019). As a space-based remote sensing tool, ICESat-2 

offers powerful capabilities of estimating forest attributes from local to global spatial 

scales. To exemplify, the precursor to ICESat-2, ICESat, operated from 2003 to 2010 

and the data collected by its sensor, the Geoscience Laser Altimeter System (GLAS), 

was used in estimating forest heights (Baghdadi et al. 2014; Harding and Carabajal 

2005; Lefsky et al. 2007) and AGB (Lefsky et al. 2005; Nelson et al. 2017) as well as 

used for the development of global maps of AGB (Hu et al. 2016) and forest canopy 

heights (Simard et al. 2011). GLAS produced 1064 nm and 532 nm laser pulses at a 

frequency of 40Hz and illuminated a spot on the ground measuring 60 m in diameter 

every 172 m in the along-track direction (Zwally et al. 2002).  To examine the accuracy 

of GLAS for measuring vegetation parameters at the footprint level, data from GLAS 

footprints over Sam Houston National Forest in Texas were compared with tree 

measurements derived from discrete return airborne lidar (Popescu et al. 2011). In this 

study, GLAS-derived height variables explained 80% of the variance in airborne lidar 

derived AGB (RMSE = 37.7 Mg/ha) (Popescu et al. 2011), demonstrating strong 

potential for characterizing vegetation structure.  
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In terms of large-scale vegetation mapping, Simard et al. (2011) used Random 

Forest (RF) to model a relationship between GLAS canopy heights and spatially 

continuous, global ancillary variables that included climate maps, elevation from the 

Shuttle Radar Topography Mission (SRTM) and tree cover from the Moderate 

Resolution Imaging Spectroradiometer (MODIS). Validation of the 1-km wall-to-wall 

canopy height map with selected FLUXNET sites resulted in a RMSE of 6.1 m (R
2
 = 

0.50).  In another study, Hu et al. (2016) utilized data from GLAS, ground inventory 

data, normalized difference vegetation index (NDVI) and land cover from MODIS, 

climatic variables, and topography from SRTM, to generate a wall-to-wall, global AGB 

map at 1 km spatial resolution. Height measurements from GLAS were first extrapolated 

to spatially continuous layers and then used with the other mapped predictor variables to 

build a relationship with ground-based estimates of AGB with RF (Hu et al. 2016). 

Evaluation of the final AGB product using the ground inventory data, gave a R
2
 and 

RMSE of 0.56 and 87.5 Mg/ha respectively (Hu et al. 2016).  

Like its predecessor, the Advanced Topographic Laser Altimeter System 

(ATLAS) instrument aboard ICESat-2 is designed to primarily measure ice sheet mass 

but will capture data that can potentially be used to measure structural characteristics of 

forests and contribute to AGB mapping (Markus et al. 2017) as previously demonstrated 

with GLAS data. The ATLAS instrument will collect measurements between 88° north 

and south latitudes during its three-year duration (Markus et al. 2017). There are 

substantial differences between GLAS and ATLAS where different processing 

methodologies for deriving and estimating forest attributes are required. Unlike ICESat’s 
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full waveform lidar which emitted pulses in the near-infrared region, ATLAS is a photon 

counting system, operating in the visible wavelengths, at 532 nm (Glenn et al. 2016). 

GLAS produced a single beam and nominal 65 m-diameter footprints that were spaced 

about 172 m apart (Schutz et al. 2005) while ATLAS operates at 532 nm and emits three 

pairs of beams spaced 3.3 km apart with a 90-m distance within pairs (Markus et al. 

2017). A pair consists of a strong beam and a weak beam based on a 4:1 transmit energy 

ratio (Neuenschwander and Magruder 2016). Each beam has a 14-m diameter footprint 

(Leigh et al. 2015), possibly up to 17 m (Markus et al., 2017) with an along-track 

sampling interval of 70 cm to facilitate dense sampling and serve to better capture 

elevation changes (NASA 2017). Thus, the improved spatial coverage associated with 

ATLAS will better capture changes in ice sheets than ICESat and potentially allow for 

vegetation mapping at a higher resolution (Abdalati et al. 2010). 

The current literature has few vegetation studies focused on ICESat-2.  For 

example, Montesano et al. (2015) conducted photon simulations representative of data 

that will be obtained from ICESat-2, calculated canopy height metrics, modeled AGB 

and computed uncertainty associated with AGB for a synthetic Larix forest gradient of a 

taiga-tundra ecotone. This study highlighted difficulty in differentiating AGB and 

characterizing vegetation structure under sparse forest cover, which is characteristic of 

Larix forest gradients in boreal forests (Montesanto et al. 2015).  Lower precision in 

estimating heights in low-density savanna landscapes was also noted in a study by 

Gwenzi et al. (2016).  Data from the Multiple Altimeter Beam Experimental Lidar 

(MABEL) instrument, which serves as test instrument for ICESat-2, was used to 
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investigate the capability of ICESat-2 in assessing savanna vegetation (Gwenzi et al. 

2016). In another study, MABEL was used to assess low-height vegetation, mainly 

shrubs and grasslands as well as a denser vegetation cover consisting of tree species and 

sagebrush communities typical of dryland systems (Glenn et al. 2016). For the site 

dominated with low-height vegetation, MABEL data explained only 12% and 18% of 

the variance in shrub cover and vegetation height respectively compared to 49% of 

variance in the mean maximum height for the taller and more vegetation dense site 

(Glenn et al. 2016). A common approach in these studies is the use of unfiltered photon 

data similar to what will be derived by ATLAS which includes background or noise 

photons. Literature pertaining to ICESat-2’s land and vegetation product or ATL08, is 

limited. The ATL08 product will provide terrain and canopy height estimates as well as 

canopy cover parameters from measurements, at a step-size of 100 m along the ground 

track (Neuenschwander and Magruder 2016).  

This study highlights the use of data in a format similar to what will be provided 

by ICESat-2’s ATL08 for estimating and mapping AGB and modeling canopy cover. It 

is essential to understand how the data can be utilized to assess forests and be prepared 

to have a methodology in place to use as soon as it becomes available. Using simulated 

ICESat-2 data along two years of planned ICESat-2 profiles, results from this study will 

demonstrate how data acquired by ATLAS onboard ICESat-2 can be used to estimate 

forest biophysical parameters, and provide insights about expected accuracies.  
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1.1. Project Significance 

Lidar facilitates the mapping of the three-dimensional structure of forests, 

facilitating assessments of AGB over a range of scales (Popescu 2007) and an improved 

understanding of the amount and distribution of carbon stored by forest ecosystems (Hall 

et al. 2011). ICESat-2 offers an incredible opportunity to obtain large-scale coverage 

about vegetation and associated changes, through data collected along transects on the 

earth’s surface. By deriving measurements within the laser’s footprint and combining the 

results with other data sources, forest structure can be modeled beyond the extent of this 

footprint to provide spatially contiguous information at multiple scales. AGB and 

canopy cover estimation models and AGB maps, which are the primary outcomes of this 

study, will demonstrate approaches for the use of satellite data that can potentially 

support decision-making efforts to contribute to natural resource sustainability and 

climate change initiatives. 

 

1.2. Research Objectives 

The primary aim of this study was to develop approaches for utilizing data that 

will be provided by ICESat-2, for characterizing forest structure. It focused on Sam 

Houston National Forest (SHNF) in south-east Texas (Latitude 30° 42′ N, Longitude 95° 

23′ W) using existing data for the area, to propose  methodologies for estimating forest 

measurements and extrapolating data from lidar footprints to provide full wall-to-wall 

coverage for an entire area. The main objectives of this study were to: 
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1. Derive a simulated ICESat-2 PCL vegetation product along known ICESat-2 track 

locations over SHNF, using airborne lidar data and examine the use of simulated PCL 

metrics for modeling AGB and canopy cover.  

2. Create wall-to-wall AGB maps at 30-m spatial resolution and characterize AGB 

uncertainty by using simulated photon-counting lidar (PCL)-estimated AGB and 

predictor variables from Landsat data and derived products. 

3. Investigate deep learning (DL) neural networks for producing an AGB product with 

ICESat-2, using simulated ICESat-2 PCL-estimated AGB Landsat imagery, canopy 

cover and land cover maps.  

Data for the following scenarios were analyzed for meeting the objectives of this 

study: (1) Simulated ICESat-2 PCL vegetation product from data with noise levels 

associated with daytime operation of ICESat-2 (daytime scenario), (2) Simulated 

ICESat-2 PCL vegetation product from data with noise levels associated with nighttime 

operation of ICESat-2 (nighttime scenario), and (3) Simulated ICESat-2 PCL vegetation 

product without the impact of noise (no noise). Each of the three main objectives above 

is addressed in Chapters 2, 3 and 4 of this dissertation. Chapter 2 presents the use of 

simulated ICESat-2 vegetation product from airborne lidar data for estimating AGB and 

canopy cover along known ICESat-2 track locations over SHNF. An approach for 

mapping AGB from simulated PCL-estimated AGB and predictor variables from 

Landsat data is provided in Chapter 3 and an investigation of DL neural networks for 

producing an AGB product is presented in Chapter 4. Each chapter was written as a 

standalone manuscript for submission in a peer-reviewed journal.  Chapter 2 has been 
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published in Remote Sensing of Environment and Chapter 3 is currently under review in 

Annals of Forest Research. Final conclusions for this study are presented in Chapter 5 of 

this dissertation. 
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2. ESTIMATING ABOVEGROUND BIOMASS AND FOREST CANOPY COVER 

WITH SIMULATED ICESAT-2 DATA

 

 

2.1. Introduction 

Forests are an integral component of the earth’s carbon cycle and contribute to 

maintaining carbon balance and mitigating climate change (Lu 2006; McKinley et al. 

2011; Sessa and Dolman 2008). Even though forests account for 70-90% of terrestrial 

biomass (Houghton et al. 2009), there are uncertainties associated with the amount and 

distribution of carbon stored in forests (Hall et al. 2011; Hese et al. 2005; Sessa and 

Dolman 2008). Knowledge of the quantitative changes in forest biomass is even more 

limited but crucial to global carbon balance (Houghton et al. 2009). An estimated 50% 

of plant biomass is carbon (Drake et al. 2003; Le Toan et al. 2011) where estimates of 

AGB have been used as surrogates for aboveground carbon (Nelson et al. 2012). As 

such, estimation of AGB can reduce uncertainty in quantifying terrestrial carbon (Hese 

et al. 2005; Le Toan et al. 2011). Remote sensing systems have been recognized as 

practical tools that, when integrated with ground-based forest inventory, can facilitate 

reliable, up-to-date AGB estimates (Sessa and Dolman 2008).  Light detection and 

ranging (lidar) instruments are active remote sensing devices that transmit energy and 

record backscattered energy from features on the earth’s surface (Campbell and Wynne 

                                                 


 Reprinted with permission from “Estimating aboveground biomass and forest canopy cover with 

simulated ICESat-2 data” by Lana L. Narine, Sorin Popescu, Amy Neuenschwander, Tan Zhou, Shruthi 

Srinivasan, and Kaitlin Harbeck, 2019. Remote Sensing of Environment, 224, 1-11, DOI: 

0.1016/j.rse.2019.01.037, Copyright [2019] by Elsevier. 
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2011). By measuring the time taken for laser energy to reach the surface and also return 

to the sensor and converting those times to distance measurements, three-dimensional 

attributes become obtainable (Popescu 2007). The data acquired by the lidar sensor can 

then be analyzed to provide precise vegetation metrics. Measurements, including canopy 

height, basal area, timber volume and biomass have all been successfully derived from 

lidar at multiple spatial scales (e.g. Boudreau et al. 2008; Holmgren 2004; Neigh et al. 

2013; Nelson et al. 2017; Popescu 2007; Rahlf et al. 2014). Thus, lidar can be used to 

monitor biomass over a large scale by providing information on three-dimensional 

vegetation structure.  

Lidar sensors are mounted on terrestrial, airborne and spaceborne platforms, with 

each type offering unique advantages. For instance, terrestrial lidar scanning (TLS) has 

the capability of acquiring tree-level attributes like diameter at breast height (dbh) with 

high accuracy (RMSEs < 4 cm) and millimeter-level detail (Kankare et al. 2015; Liang 

et al. 2016). Tree diameters have also been accurately estimated with lidar sensors from 

airborne platforms (e.g. Popescu 2007) and AGB and gross volume have been estimated 

at the stand level (e.g. Sheridan et al. 2015).  Spaceborne lidar offers a remarkable 

opportunity to assess forest resources at or near global scales and cover areas that are 

traditionally inaccessible to ground-based samples. The National Aeronautics and Space 

Administration (NASA) launched Ice, Cloud, and land Elevation Satellite (ICESat) in 

January 2003 with the primary goal of measuring ice sheets via the Geoscience Laser 

Altimeter System (GLAS) sensor, a spaceborne lidar. This mission served to capture 

changes in ice elevation and facilitate an assessment of their contributions to global sea-
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level rise (Zwally et al. 2002). The ICESat mission was successfully completed in 

October 2009, providing invaluable global data about polar ice sheets as well as 

measurements that were analyzed to provide cloud information and vegetation metrics 

(e.g. Farrell et al. 2009; Khan et al. 2014; Lefsky et al. 2007; Pritchard et al. 2009; 

Spinhirne et al. 2005 ). Noteworthy is that the GLAS sensor onboard ICESat represented 

the first and only spaceborne lidar instrument to capture measurements at a near-global 

scale. GLAS captured 1.92 billion lidar waveforms globally and facilitated the 

estimation of forest resources, specifically forest biomass, over traditionally inaccessible 

forested areas like boreal forests and the tropics (Nelson et al. 2009). Wall-to-wall maps 

of forest canopy heights have also been developed using GLAS data (Lefsky 2010; 

Simard et al. 2011).  Finding strong correlations between GLAS-derived canopy heights 

and other existing data, Simard et al. (2011) modeled global canopy heights using GLAS 

data and tree cover, elevation and climatology maps.  

A follow-on mission to ICESat, ICESat-2, was launched on September 15th, 

2018 (NASA 2017). The Advanced Topographic Laser Altimeter System (ATLAS) 

onboard ICESat-2 was designed to primarily measure ice sheet mass but captures data 

that can potentially be used to measure structural characteristics of forests at large spatial 

scales (Markus et al. 2017). Vegetation data products from ICESat-2 will complement 

other space-based vegetation missions (Markus et al. 2017), such as the Global 

Ecosystem Dynamics Investigation Lidar (GEDI) (Stysley et al. 2016), NASA-ISRO 

Synthetic Aperture Radar (NISAR) (Rosen et al. 2016) and the European Space Agency 

P-band radar BIOMASS mission (Carreiras et al. 2017). It is therefore necessary to 
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determine how data collected by ICESat-2 can be used to contribute to estimating and 

monitoring forest carbon.  

There are substantial differences between GLAS and the ATLAS instrument 

(Table 1), where different processing methodologies for obtaining and extrapolating 

forest measurements are required. ATLAS operates at 532 nm and unlike a single beam 

produced by GLAS, emits three pairs of beams spaced 3.3 km apart with a 90-m distance 

within pairs (Markus et al. 2017). A pair consists of a strong beam and a weak beam 

based on a 4:1 transmit energy ratio (Neuenschwander and Magruder 2016). Each beam 

has a 14-m diameter footprint (Leigh et al. 2015), possibly up to 17 m (Markus et al. 

2017) with an along-track sampling interval of 70 cm to facilitate dense sampling and 

serve to better capture elevation changes (NASA 2017).  GLAS emitted pulses in the 

near-infrared region which is important for vegetation studies (Campbell and Wynne 

2011) but the green wavelength used by ATLAS is associated with reduced leaf 

reflectance (Swatantran et al. 2016) and its use may also be limited during overcast 

conditions due to absorption by clouds (Lefsky et al. 2002, p. 20). However, the 

improved spatial coverage associated with ATLAS will better capture changes in ice 

sheets than ICESat and allow for vegetation mapping at a higher resolution (Abdalati et 

al. 2010). Improved performance, in terms of sampling rates and data collection with the 

single photon lidar (SPL) technique used for ICESat-2, has also been demonstrated 

(Degnan 2002; Swatantran et al. 2016). 
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Table 1. Comparison of GLAS on ICESat with ATLAS onboard ICESat-2 (from 

Markus et al. 2016) 

Specification 

System 

Geoscience Laser Altimeter 

System (GLAS) on ICESat 

Advanced Topographic Laser Altimeter 

System (ATLAS) on ICESat-2 

Measurement 

approach 

Energy waveform Photon counting 

Wavelength 1064 nm 532 nm 

Repetition rate 40 Hz 10 kHz 

Number of beams 1 6 (3 pairs with 90 m space within pairs 

and 3.3 km pair seperation) 

Footprint size 70 m 14 m 

Along-track sampling 172 m 0.7 m 

 

One of ICESat-2’s mission data products will be its land-vegetation along track 

product (ATL08) (Brown et al. 2013). ATL08 will provide terrain and canopy height 

estimates as well as canopy cover parameters from measurements, at a step-size of 100 

m along the ground track (Neuenschwander et al. 2017). These data parameters will be 

used to obtain ATL18 products which consist of gridded terrain and canopy maps. 

ATL08 and ATL18 products will therefore facilitate forest assessments at global scales 

and facilitate biomass and carbon monitoring that would not otherwise be possible with 

only ground measurements.  

The current literature has few PCL studies focused on ICESat-2.  For instance, 

Popescu et al. (2018) describe algorithms to filter noise, classify photons and retrieve 

terrain and canopy heights from ICESat-2 data. The application of noise filtering and 

photon classification algorithms to simulated ICESat-2 data yielded average RMSE 

values of 2.70 m and 3.59 m for estimating canopy heights. Overall, results from testing 

the algorithms to process PCL data similar to expected ICESat-2 data indicate potential 

for characterizing forest structure with ICESat-2 (Popescu et al. 2018). Montesano et al. 
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(2015) conducted photon simulations representative of data that will be obtained from 

ICESat-2, calculated canopy height metrics, modeled AGB and computed uncertainty 

associated with AGB for a synthetic Larix forest gradient of a taiga-tundra ecotone. This 

study highlighted difficulty in differentiating AGB and characterizing vegetation 

structure under sparse forest cover, which is characteristic of Larix forest gradients in 

boreal forests (Montesano et al. 2015).  Lower precision in estimating heights in low-

density savanna landscapes was also noted in a study by Gwenzi et al. (2016).  Data 

from the Multiple Altimeter Beam Experimental Lidar (MABEL) instrument, which 

serves as test instrument for ICESat-2, was used to investigate the capability of ICESat-2 

in assessing savanna vegetation (Gwenzi et al. 2016). In another study, MABEL was 

used to assess low-height vegetation, mainly shrubs and grasslands as well as a denser 

vegetation cover consisting of tree species and sagebrush communities typical of dryland 

systems (Glenn et al. 2016). For the site dominated with low-height vegetation, MABEL 

data explained only 12% and 18% of the variance in shrub cover and vegetation height 

respectively compared to 49% of variance in the mean maximum height for the taller 

and more vegetation dense site (Glenn et al. 2016). Since more accurate estimates of 

vegetation characteristics are critical for vegetation management and monitoring 

activities, a synergistic approach between ATLAS metrics and Landsat 8 OLI data was 

emphasized as a more feasible approach. A common approach in these studies is the use 

of unfiltered photon data similar to what will be derived by ATLAS, which includes 

background or noise photons. Literature pertaining to ICESat-2’s vegetation products, 

specifically ATL08, is limited. Thus, the investigation of a methodology involving the 
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utilization of ICESat-2 for assessing forest parameters, focusing on the mission’s 

vegetation product, will contribute to existing studies on ICESat-2 PCL data.    

This study highlights the use of data in a format similar to what will be provided 

by ICESat-2’s ATL08 for modelling AGB and canopy cover. Results will demonstrate 

how data acquired by ATLAS onboard ICESat-2 can be used to measure forest 

biophysical parameters. 

 

2.1.1. Objectives 

The goal of this study was to develop approaches for utilizing data that will be 

collected by ICESat-2 for estimating AGB and canopy cover.  As a representative type 

of forests of the southeastern US, Sam Houston National Forest (SHNF) served as the 

study area and existing data were used for developing a methodology to estimate forest 

attributes. The specific objectives of this study were to: 

1. Derive a simulated ICESat-2 PCL vegetation product along known ICESat-2 track 

locations over SHNF, using airborne lidar data. 

2. Examine the use of simulated PCL metrics for modelling AGB along ICESat-2 

profiles using a simulated ICESat-2 PCL vegetation product and reference AGB 

estimated from airborne lidar data. 

3. Estimate forest canopy cover using simulated PCL canopy product data and airborne 

lidar-derived canopy cover.   

Data for the following scenarios were analyzed for meeting the objectives of this 

study: (1) Simulated ICESat-2 PCL vegetation product from data with noise levels 
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associated with nighttime operation of ICESat-2 (nighttime scenario), (2) Simulated 

ICESat-2 PCL vegetation product from data with noise levels associated with daytime 

operation of ICESat-2 (daytime scenario), and (3) Simulated ICESat-2 PCL vegetation 

product without the impact of noise. 

 

2.2. Materials and methods 

2.2.1. Study Area 

The study area is located in south-east Texas (30° 42′ N, 95° 23′ W) and 

encompasses an estimated area of 48 km² in the SHNF. It is situated in Walker County, 

Texas within the Pineywoods ecoregion, which is characterized as being the wettest area 

in the state and consisting of predominantly pine forests (Texas A&M Forest Service, 

2015). According to the 2011 National Land Cover Database (NLCD), approximately 

58% of the region or 80% of its forested area (NLCD classes: deciduous forest, 

evergreen forest, mixed forest, and woody wetland ) is classified as evergreen forests 

(Homer et al. 2015; MRLC 2017), which primarily include Loblolly pine (Pinus taeda) 

plantations and old growth Loblolly pine stands (Popescu 2007). The site also includes 

hardwoods that grow on floodplains and drier uplands. Popular upland and bottomland 

hardwoods are White Oak (Quercus alba), Southern Red Oak (Quercus falca), Water 

Oak (Quercus nigra) and Sweetgum.  Based on a three-dimensional canopy height 

model (CHM) generated from discrete return lidar data for the study area, the average 

tree height is estimated to be 13 m and maximum, 65 m.  Average tree canopy cover is 

estimated to be 86% within vegetated areas and 97% within pine forests only (MRLC 
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2017). The area consists of gentle slopes with elevations ranging from 62 m to 105 m 

and an average elevation of 85 m (Popescu 2007). 

The study site was also used for examining GLAS data from the ICESat mission 

for AGB estimates (Popescu et al. 2011), which allows for comparisons of AGB 

estimates from forthcoming ICESat-2 data and those derived from ICESat. ICESat-2 

tracks for the first two years of the mission were made available by its Science 

Definition Team (SDT) (Neuenschwander et al. 2017). These track locations over the 

study site, as represented by 1 m National Agriculture Imagery Program (NAIP) imagery 

(USDA Farm Service Agency 2015) from the same year of discrete return lidar 

acquisition, are illustrated in Figure 1. 
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Figure 1. a. Map of ICESat-2 tracks overlaid on 2010 NAIP aerial imagery for the 

study area within SHNF with demarcation of 100 m segments along-track shown on 

inset map b. and an illustration of ICESat-2 along-track footprints spaced 70 cm 

apart, with 7 m radii on inset map c. 
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2.2.2. Airborne lidar data and simulated PCL data 

Discrete return lidar data were acquired for SHNF in November 2010 using an 

Optech 3100EA sensor and were used to simulate the PCL data structures similar to 

what are collected by the ATLAS system. Airborne lidar data were acquired along 12 

flight lines in the north-south direction and 19 lines flown from east to west, at around 

600 m above-ground-level (AGL) with a point density of 4 points per m
2
. PCL data were 

generated using an ICESat-2 footprint generator and PCL simulator (Neuenschwander 

and Magruder 2016). The footprint generator and PCL simulator were developed in 

MATLAB/Simulink (The MathWorks, Inc. 2015). Footprints were created using the 

start and end coordinates for each proposed ICESat-2 track within the study area (Figure 

1) and a 70-cm center-to-center spacing along the track.  

The PCL simulation process was previously used to evaluate vertical sampling 

error associated with ICESat-2 terrain and canopy height retrievals (Neuenschwander 

and Magruder 2016). The data used were simulated from full-waveform and discrete 

return airborne lidar data and represented expected height retrievals without the impact 

of solar noise (Neuenschwander and Magruder 2016). In this study, airborne lidar data 

processed to obtain AGL heights were used as the input data for simulating photons.  

PCL data were  generated by first identifying lidar points falling within a 7 m radius, 

representative of an ICESat-2 footprint size (Figure 1c) (Leigh et al. 2015). A histogram 

of the height values was then constructed to create a 14-m diameter pseudo-waveform, 

which characterized the vegetation’s vertical structure within the footprint (Blair and 

Hofton 1999; Neuenschwander and Magruder 2016). This was normalized to create a 
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probabilistic distribution function (PDF) and a height vector was generated for each 

footprint as described in Neuenschwander and Magruder (2016). A Poisson random 

distribution was then used to randomly sample the number of return photons. The mean 

number of signal photons per shot for the study area was modeled at 1.9, based on the 

ATLAS performance model for temperate forests (Martino 2010). This signal level 

represents the best case scenario for vegetated areas, compared to 1.0 over boreal forest 

and 0.6 for tropical forest (Neuenschwander and Magruder 2016). A weighted random 

sample from the height vector was carried out with the normalized PDF as the weighing 

function. The algorithm returned photon heights and height metrics and a mean of 2 

photons were generated per footprint.  

In addition to signal photons, other photons (noise) are detected by the ATLAS 

instrument. These photon events are associated with solar background noise and 

atmospheric scattering (Moussavi et al. 2014) and since they are not discernable from 

signal photons, represent a challenge with analyzing PCL data (Glenn et al. 2016; 

Moussavi et al. 2014). With ICESat-2 operating under both day and night conditions, the 

effect of solar background noise is expected to be the major source of noise during 

daytime operations (Degnan 2002). To account for the effects of noise, another 

simulation was carried using the 2010 discrete return lidar dataset for the site. After 

signal photons were generated using the PCL simulator, noise levels representative of 

the impact of the atmosphere and solar background noise, were added to the dataset. In 

total, data for three scenarios were analyzed; 1) simulated data without the addition of 

noise, 2) daytime scenario, and 3) nighttime scenario.  Noise photons were added and 
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data processed using noise filtering and photon classification algorithms for the latter 

two scenarios (Popescu et al. 2018). 

 

2.2.3. Reference AGB Estimates 

A three-dimensional 1 m canopy height model (CHM) was generated from the 

airborne lidar data collected for the study area in 2010 and used as input in TreeVaW, a 

lidar processing software that can automatically retrieve tree-level parameters like tree 

locations and crown widths (Popescu et al. 2003; Popescu and Wynne 2004). The 

identification of individual trees with TreeVaW relies on the relationship between tree 

heights and crown widths, which can be manually specified by adjusting the default 

regression model based on loblolly pines. Linear regression models were used for pines 

and deciduous species separately, to develop equations between crown size as the 

independent variable and tree height. Ground measured tree heights and corresponding 

crown diameters from a total of 705 pine trees and 603 deciduous trees from field 

inventories carried out in 2004 and 2009 were used to obtain TreeVaW coefficients. 

Output consisting of estimated dbh measurements, were then used to estimate AGB for 

individual trees following a generalized biomass regression equation (Eq. (1)): 

AGB (kg) = exp (𝛽0 +  𝛽1 ln  dbh),       (1) 

where dbh is the diameter at breast height (cm) and 𝛽0 and 𝛽1, are the parameters for the 

species group (Jenkins et al. 2003, p. 20). AGB for pines were calculated using the 

parameters for the “pine” species groups, with 𝛽0 = -2.5356 and 𝛽1= 2.4349. To 
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calculate AGB for deciduous trees, parameters for the “hard maple/oak/hickory/beech” 

group were used, with 𝛽0 = -2.0127 and 𝛽1= 2.4342 (Jenkins et al. 2003, p. 20). 

A similar methodology for estimating AGB of pine trees within the same study 

area was previously introduced by Popescu (2007). In this study, aboveground biomass 

of field-measured pine trees was estimated using the general biomass equation for pines 

from Jenkins et al. (2003), a CHM from airborne lidar data was processed with 

TreeVaW and AGB was estimated using lidar-derived dbh. The accuracy of lidar-

derived dbh was assessed and the relationship between lidar and ground estimated 

biomass was also evaluated with linear regression. Results indicated a good fit, where 

the lidar-estimated biomass explained 87% of the variance of field-estimated AGB, with 

an RMSE of 169 kg, representing 47% of the dependent mean (Popescu 2007, p. 652). 

Evidently, lidar data reliably estimated dbh (R
2
 = 0.87, RMSE = 4.9 cm), which were 

used to estimate biomass of trees within SHNF.  

 

2.2.4. Airborne Lidar Canopy Cover 

Canopy cover calculated from airborne lidar data was used as a dependent 

variable for developing regression models with simulated PCL-derived metrics. To 

retrieve canopy cover parameters, airborne lidar data for SHNF was clipped using 

LAStools (Isenburg 2015) with the spatial coverage of simulated PCL data within the 

study area used as the clipping extent. Canopy cover, defined as the proportion of all 

returns above a specified height threshold to the total returns (USDA Forest Service 

2014) within a 100 m segment, was considered at 2 m and 4.6 m height thresholds. 



 

28 

 

Consistent with Li et al. (2015), a 2 m cut-off height implied that canopy heights under 

this value were not considered forest vegetation, while the latter height cut-off of 4.6 m 

represented the US Forest Service’s minimum height of a tree (USDA Forest Service 

2016).  Airborne lidar canopy cover metrics were computed with FUSION (McGaughey 

2016) (Version 3.50) for matching segments of simulated PCL and reference airborne 

lidar-estimated AGB data as described in Section 2.5. 

 

2.2.5. Data processing 

The distinction of signal photons from a noise background is critical for accurate 

vegetation height retrievals. Processing algorithms described in Popescu et al. (2018) 

were used to derive forest canopy heights from the simulated PCL data associated with 

daytime and nighttime scenarios. Noise filtering consisted of three main steps. To 

summarize, first, elevation information from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) GDEM (version 9) and the Global 

Canopy Height Map (GCHM) were used as an initial filter to retain photons that were 

likely from the ground and canopy. Second, cluster analysis was used to remove outlier 

photons and third, 95% confidence interval (CI) filters within each along-track distance 

interval were applied. To classify photons, an overlapping moving window was applied 

and cubic spline function used to obtain top of canopy (TOC) and ground surfaces. The 

detailed steps of the noise filtering and photon classification algorithms, and an 

assessment of algorithm performance under several vegetation conditions and noise 

levels associated with different operation times, are presented in Popescu et al. (2018).  
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After processing the simulated PCL data scenarios (daytime and nighttime), canopy 

heights were derived by subtracting the ground elevation from estimated top of canopy 

heights. 

The processed simulated PCL datasets for the daytime and nighttime scenarios 

and the simulation without the addition of noise were each clipped to create 100 m 

along-track segments using FUSION (McGaughey 2016). A 100 m step-size along the 

proposed ground tracks was chosen since canopy and terrain parameters for ATL08 will 

be provided at the same scale, with each 100 m described as a segment 

(Neuenschwander et al. 2017). In this study, data for segments less than 100 m were 

excluded, resulting in a total of 606 100 m segments for each scenario, within the study 

site.  

Lidar studies have demonstrated significant relationships between mean height, 

height percentiles and AGB (e.g. Ku et al. 2012; Sheridan et al. 2015). Height 

percentiles, canopy cover and canopy density metrics for the simulated PCL segments 

were calculated using FUSION (McGaughey 2016). A list of the variables derived for 

each of the three scenarios, is presented in Table 2. Canopy cover was calculated at two 

height thresholds; 2 m and 4.6 m. A height-bin approach was previously implemented by 

Popescu and Zhao (2008) within the study area to examine the vertical structure of the 

forest canopy. Similarly, canopy density, defined as the proportion of returns in each 

height stratum to the total returns within each cell (USDA Forest Service 2014, p.3) was 

calculated for 0 - 25 m height bins, at 5 m intervals. The last height bin included photon 

returns above 25 m.  
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Spatially coincident reference AGB values were retrieved in ArcMap and a 

similar approach was undertaken with the airborne lidar data in LAStools to obtain 

canopy cover metrics within the same extent. AGB values for 100 m segments were up-

scaled to represent per hectare estimates for regression analysis. 

 

2.2.6. Statistical analysis 

Examination of the reference airborne lidar-estimated AGB using variogram 

analysis and calculation of Moran’s I suggested the presence of spatial autocorrelation. 

The range was estimated to be 500 m so systematic sampling was implemented to select 

every 5th 100 m segment from a randomly selected starting point, resulting in a total of 

121 segments for each scenario that were analyzed.  The simulated PCL segments were 

randomly assigned to training and test sets, where one-third of the segments were used 

for model testing (n = 36). Three regression models were developed with the training 

datasets (n = 85) to relate airborne lidar data to simulated PCL parameters. Utilizing 

simulated PCL data for estimating AGB involved the use of linear regression models 

that incorporated simulated PCL-derived metrics from 100 m segments and AGB 

acquired from corresponding spatial extents. Canopy cover calculated from airborne 

lidar data within spatially coincident segments and PCL height, canopy cover and 

canopy density metrics were also used for developing a relationship with airborne lidar-

derived canopy cover. A total of 16 variables (Table 2) were considered for building 

linear regression models to relate simulated PCL parameters with the dependent 

variables. Stepwise regression was used to fit possible models for predicting AGB and 
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canopy cover and Corrected AIC (AICC) and Mallow’s Cp criteria were applied for 

selecting the best model. Results were also compared with those obtained from the 

mixed stepwise regression algorithm to select variables for the final multiple regression 

models. Multicollinearity among the selected independent variables was then 

investigated using variance inflation factors (VIFs) where variables with a VIF > 10 

were considered indicators of multicollinearity and were subsequently removed. This 

indicator has been applied in other studies involving biomass estimation with remote 

sensing data using regression analysis (e.g. Margolis et al. 2015; Nelson et al. 2017; 

Sheridan et al. 2015; Srinivasan et al. 2014). 

 To evaluate model performance with the separate test set, R
2
 and RMSE were 

calculated (Eq. (2) and Eq. (3)): 

RMSE = √∑ (𝑃𝑖
𝑛
𝑖=1 − 𝑂𝑖)2/𝑛        (2) 

R
2
 = 1 −  ∑ (𝑃𝑖 −  𝑂𝑖)𝑖

2
 /  ∑ (𝑂𝑖 − 𝑖 𝑂�̅�)

2       (3) 

Where n is the number of observations (n = 36), 𝑃𝑖 is the model-predicted AGB, 𝑂𝑖 is the 

reference airborne lidar-estimated AGB, and 𝑂�̅� is the mean reference airborne lidar-

estimated AGB. 
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Table 2. Regression variables 
Independent Variables  

(Simulated PCL data) 

Description Response 

Variables  

(AGB and 

canopy cover 

from airborne 

lidar data) 

Mean, maximum and 

percentile heights (meters): 

max 

mean 

P10 

P25 

P50 

P75 

P90 

P95 

 

 

Maximum height 

Mean height 

10th percentile height  

25th percentile height 

50th percentile height 

75th percentile height 

90th percentile height 

95th percentile height 

- AGB (Mg/ha) 

- Canopy cover 

(percentage of 

returns above 2 

m / 4.6 m) 

 

Canopy cover: 

C1_2m 

C2_4_6m 

 

Percentage of all returns above 2 m  

Percentage of all returns above 4.6 m 

Canopy density: 

D1_0_5 

D2_5_10 

D3_10_15 

D4_15_20 

D5_20_25 

D6_25 

 

Proportion of returns in the stratum- 0-5 m 

Proportion of returns in the stratum - 5-10 m 

Proportion of returns in the stratum - 10-15 m 

Proportion of returns in the stratum - 15-20 m 

Proportion of returns in the stratum - 20-25 m 

Proportion of returns in the stratum - above 25 m 

 

 

2.3. Results 

Linear regression results for estimating AGB and canopy cover with simulated 

PCL data are highlighted in Table 3. Variables in the final models were all statistically 

significant. The PCL simulation with no noise represented the best case scenario for the 

study site. With this simulation, the expected photon detection rate for the forest type in 

the study area was applied, but background noise, which represents a challenge for 

photon counting systems (Glenn at al. 2016), was not included. The resulting AGB 

model with this data used mean height, and the 15-20 m height bin, explained 80% of 

the variance in reference airborne lidar-estimated AGB for the training set and yielded a 
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RMSE of 22.14 Mg/ha or 28% of the dependent mean of 79 Mg/ha. Both variables were 

statistically significant at 0.001 level. When the model was fitted on the test set, the R
2 

and RMSE were 0.79 and 19.16 Mg/ ha respectively (Figure 2c). Canopy cover models 

exhibited greater predictive abilities than the AGB model. The final model for the 2 m 

canopy cover used 25th and 50th height percentiles as well as the canopy cover metric (2 

m), which were all statistically significant at 0.05 level. These variables explained 91% 

variance of the airborne lidar-derived canopy cover calculated at the 2 m height 

threshold for the training dataset and test set. RMSE values were 6.30% (10% of mean 

airborne lidar-derived canopy cover of 62%) and 7.58% with the training data and test 

data respectively. Canopy cover (4.6 m) calculated with the simulated PCL data was the 

single best predictor of airborne lidar-derived canopy cover at this threshold. The 

simulated PCL canopy cover at the 4.6 m threshold was significant at 0.001 level. This 

metric explained 91% of the variance in airborne lidar-derived canopy cover and had a 

RMSE value of 6.48% (or 11% of a mean canopy cover of 57%). With the test dataset, 

the R
2 

and RMSE values were 0.93 and 6.36% respectively. 

Estimation models with the nighttime dataset did not perform as well as those 

using the simulation without the addition of noise but results are highly indicative of 

potential for AGB and canopy cover estimation with ICESat-2 data (Figures 2a, 3a, and 

4a). With the nighttime scenario, simulated PCL-derived 10th and 90th height 

percentiles and canopy cover (4.6 m) explained 74% of the variance in reference 

airborne lidar-estimated AGB with a RMSE of 25.50 Mg/ha, representing 32% of the 

dependent mean. The three variables in the model were found to be statistically 
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significant at 0.05 level. When the model was fitted on the test set, the R
2
 increased to 

0.79 and the RMSE was 19.23 Mg/ha. As with the no noise scenario, canopy cover 

models outperformed the AGB model. In terms of canopy cover at the 2 m height 

threshold, R
2
 for model training and model evaluation were 0.65 and 0.83 respectively.  

This linear regression model used the 10th height percentile (p-value < 0.001) and 

canopy cover (4.6 m) (p-value < 0.05) as independent variables and indicated RMSE 

values of 12.49% (20% of the dependent mean) and 10.39% with the training data and 

test set respectively. The canopy cover model for the 4.6 m height threshold used three 

variables that were significant at 0.05 level. Maximum height, 10th height percentile and 

canopy density for the 15-20 m height bin explained 68% and 75% of the variance 

associated with the airborne lidar-derived canopy cover (4.6 m) and provided RMSE 

values of 12.31% (22% of dependent mean) and 12.33% with the model-building dataset 

and test dataset respectively.  

AGB and canopy cover models generated with the daytime data did not perform 

as well as the two other scenarios (Figures 2b, 3b, and 4b). The 10th and 90th height 

percentiles and canopy cover (4.6 m) explained 66% and 63% of the variance associated 

the reference airborne lidar-estimated AGB and RMSE values were 28.90 Mg/ha or 37% 

of a mean value of 79 Mg/ha with the training dataset and 25.35 Mg/ha with the test 

data. Similar R
2
 values were observed for the canopy cover models. The regression 

model for canopy cover at the 2 m used the 10th height percentile which was significant 

at 0.001 level, and provided a R
2
 value 0.50 and a RMSE of 14.50% (24% of the 

dependent mean) with the training dataset. The 10th height percentile as well as canopy 
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density for the 15-20 m height bin explained 57% variance of airborne lidar-derived 

canopy cover model at the 4.6 m height threshold with a RMSE of 14.02% (25% of the 

dependent mean). These models explained 56% and 63% of the variability associated 

with canopy cover estimated for the 2 m and 4.6 m height thresholds from the test set 

respectively. With the test data, RMSE values were larger for the daytime scenario; 

16.69% and 15.01% for the 2 m canopy cover and 4.6 m canopy cover respectively. 

 

Table 3. Regression results for estimating AGB and canopy cover 

Scenario 
Dependent 

Variable 

RMSE R² 

Model 

Training Test  

Train

ing Test 

Nighttime  AGB 

25.50 

Mg/ha 

19.23 

Mg/ha 0.74 0.79 

-10.00 + 4.62P10 + 

3.29P90 - 

0.54C2_4_6m 

 

Canopy 

Cover (2 m) 12.49% 10.39% 0.65 0.83 

 

-0.98 + 1.67P10 + 

0.39C2_4_6m 

 

Canopy 

Cover (4.6 

m) 12.31% 12.33% 0.68 0.75 

 

2.44 + 0.88max + 

1.90P10 + 

14.63D4_15_20 

       

Daytime AGB 28.90 25.35 0.66 0.63 

14.39 + 5.50P10 + 

2.35P90 - 

0.67C2_4_6m 

 

Canopy 

Cover (2 m) 14.50% 16.69% 0.50 0.56 

 

28.36 + 2.26P10  

 

Canopy 

Cover (4.6 

m) 14.02% 15.01% 0.57 0.63 

 

18.55 + 2.29P10 + 

10.86D4_15_20 

       Simulation 

with no  noise AGB 

22.14 

Mg/ha 

19.16 

Mg/ha 0.80 0.79 

-27.21 + 11.63mean - 

101.62D4_15_20  

 

Canopy 

Cover (2 m) 6.30% 7.58% 0.91 0.91 

 

-8.51 + 0.86P25 - 

0.91P50 + 

0.95C1_2m 

  

Canopy 

Cover (4.6 

m) 6.48% 6.36% 0.91 0.93 

 

-6.14 + 

0.87C2_4_6m 
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(a)      (b) 

(c)  

Figure 2. Reference airborne lidar-estimated AGB versus predicted AGB (Mg/ha) 

with the test data, shown with the 1:1 line for the (a) Nighttime scenario, (b) 

Daytime scenario, and (c) PCL simulation with no noise 
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(a)      (b) 

 

(c) 

Figure 3. Airborne lidar-derived canopy cover versus canopy cover (> 2 m) 

estimated from simulated PCL data using the test dataset, shown with the 1:1 line 

for the (a) Nighttime scenario, (b) Daytime scenario, and (c) PCL simulation with 

no noise 
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(a)      (b) 

 

(c) 

Figure 4. Airborne lidar-derived canopy cover versus canopy cover (> 4.6 m) 

estimated from simulated PCL data using the test dataset, shown with the 1:1 line 

for the (a) Nighttime scenario, (b) Daytime scenario, and (c) PCL simulation with 

no noise 
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2.4. Discussion 

This study aims to contribute to an understanding of the data that will be 

acquired from ICESat-2 for characterizing vegetation structure using simulated PCL data 

over forests located in southeastern Texas. Model testing with separate datasets for the 

simulated ICESat-2 data scenarios provided promising results with R
2 

values between 

0.56 and 0.93 for predicting reference airborne lidar-estimated AGB and canopy cover. 

Given the estimated signal level expected over temperate forests by the ATLAS 

instrument and then parsing of the data into 100 m segments for the PCL simulation 

without noise, models outperformed those developed with the daytime and nighttime 

scenarios. With this dataset, R
2 

values ranged from 0.79 to 0.93 with low RMSE values; 

between 6% and 8% for predicting canopy cover and 19.16 Mg/ha to 22.14 Mg/ha for 

estimating AGB. However, the presence of background noise represents a challenge for 

extracting signal photons (Glenn et al. 2016; Neuenschwander and Magruder 2016) 

which, among other factors, can impact the accuracy of the ATL08 product.  This 

renders an examination of simulated PCL data with expected noise as well as the photon 

detection rate essential.  The use of data with noise levels for daytime and nighttime 

operation times that were processed to report metrics for 100 m segments provided 

greater insights about ICESat-2’s ATL08 for assessing forest parameters under 

temperate forest settings.  

Solar background noise is greatly minimized with nighttime operation of a PCL 

system such as ATLAS (Popescu et al. 2018) so more accurate results were expected 

with the nighttime scenario than with the daytime scenario. In an evaluation of the noise 
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filtering and photon classification algorithm to process simulated PCL data, Popescu et 

al. (2018) indicated difficulty in differentiating the additional noise photons assigned to 

the daytime scenario from the signal photons. Popescu et al. (2018) demonstrate higher 

signal-to-noise ratios with nighttime scenarios, indicated a substantially smaller 

proportion of photons filtered due to fewer noise photons in these scenarios and reported 

improved accuracy of ground and TOC measurements derived from filtered and 

classified nighttime data. As a result, nighttime scenarios resulted in more accurate 

canopy height estimates than corresponding daytime scenarios. Canopy heights and 

associated height metrics such as height percentiles are instrumental in predicting forest 

biophysical parameters, including AGB (e.g. Popescu 2007; Sheridan et al. 2015), thus 

emphasizing the importance of obtaining accurate canopy heights from lidar systems.  In 

this study, the ability of the nighttime scenario to predict AGB was remarkable, with 

results comparable to those generated from simulated data without the addition of noise 

and the challenge with estimating AGB with the daytime scenario was emphasized. For 

instance, with test data, the R
2
 value was 0.79 for both the nighttime and the no noise 

scenarios, but was considerably lower for the daytime scenario, at 0.63 and a similar 

trend was exhibited for RMSEs. Findings from this study suggest that data obtained 

from nighttime operation of ICESat-2 may facilitate better characterization of forest 

structure than from its day counterpart.  

Models developed for the daytime and nighttime scenarios both used the 10th 

and 90th height percentiles as well as canopy cover to predict AGB. Lidar studies (e.g. 

Ku et al. 2012; Sheridan et al. 2015), demonstrate the predictive power of height 



 

41 

 

percentiles in regression models and is therefore consistent with findings from this study. 

For instance, Sheridan et al. (2015) indicated the 90th height percentile calculated from 

discrete return airborne lidar data as one of the best predictors of gross volume (gV) of 

Pacific Northwest Forest Inventory and Analysis (FIA) plots.  

ICESat-2’s ATL08 product will provide canopy heights and canopy cover 

estimates (Neuenschwander et al. 2017) which may be used to estimate AGB, as 

demonstrated in this study with processed simulated ICESat-2 data. Also, even though 

canopy cover will be provided in the ATL08 product, other available metrics should be 

investigated for improving estimates. Between the two canopy cover models, height 

percentiles, canopy cover, maximum height and canopy density were important 

predictors. Simulated PCL-derived canopy cover was only used for predicting canopy 

cover at the 2 m threshold for the nighttime scenario, while height and density metrics 

were used in other canopy cover models for both the daytime and nighttime scenarios. 

Additionally, canopy cover models for the nighttime scenario consistently outperformed 

those for the daytime scenario, with higher R
2
 values and lower RMSEs reported using 

the nighttime data.    

Results presented will be used to facilitate the examination of approaches for 

extrapolating the data to provide wall-to-wall coverage. The performance of AGB and 

forest cover models, particularly with the nighttime scenario, suggests potential for AGB 

and forest cover mapping respectively and a chance to simultaneously explore 

synergistic approaches for upscaling ICESat-2 data. For instance, Glenn et al. (2016) 

demonstrated potential synergies between Landsat-2 and ICESat-2 for spatially 
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contiguous vegetation cover mapping. The combination of lidar metrics with spectral 

metrics from Landsat 8 Operational Land Imager (OLI) resulted in better vegetation 

cover predictions (Glenn et al. 2016).  Similarly, biomass predictions were found to be 

improved by combining lidar and optical sensors (Glenn et al. 2016).  

This study investigated the prediction of AGB and canopy cover over a study site 

where terrain effects are negligible and potentially serve as a reference (Popescu et al. 

2011) of ICESat-2’s predictive ability without errors associated with contrasting 

topographical conditions. The study site consists of primarily pine stands and mixed 

hardwoods growing on gentle slopes and results are expected to vary considerably under 

different forest ecosystems and with greater topographic variation. The predicted number 

of signal photons applicable to forests in study area is highest compared to signal 

predictions for boreal and tropical forests from the ATLAS instrument (Neuenschwander 

and Magruder 2016). Based on design cases developed by ICESat-2 SDT, the ATLAS 

instrument will detect up to 2 returns per outgoing laser pulse over boreal forest and 

either 0 or 1 return over tropical forest, while 3 returns are possible for the forest used in 

this simulation. Neuenschwander and Magruder (2016) evaluated simulated ICESat-2 

data against airborne lidar data and found that the precision of terrain heights decrease 

with an increase in vegetation due to the limited number of ground returns from dense 

forest ecosystems. Consequently, larger errors in terrain and canopy height retrievals 

were reported for deciduous hardwoods and tropical forests, than for wooded savanna 

and boreal forest ecosystems. Popescu et al. (2018) evaluated performance of their noise 

filtering and photon classification algorithm using simulated PCL and MABEL data to 
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retrieve canopy heights under different vegetation conditions and reported that results 

were least accurate for tropical forests where returned photon density was lowest. These 

findings are expected to have implications, in terms of accuracy, of the ATL08 product 

and subsequent AGB modelling. 

 

2.5. Conclusions 

This study used simulated ICESat-2 data for assessing forest parameters and 

determining AGB. Metrics calculated from processed simulated ICESat-2 data for 100 m 

segments along proposed ICESat-2 tracks were evaluated for predicting AGB and 

canopy cover. The R-squared values obtained from multiple regression models using 

daytime and nighttime scenarios, ranging from 0.56 to 0.83, highlight the predictive 

ability of simulated PCL-derived metrics to characterize forest vegetation. These 

findings also suggest the potential of ICESat-2 for estimating AGB and canopy cover 

under temperate forest settings, given the expected photon detection rate of ATLAS, 

processing of simulated data scenarios with noise levels for daytime and nighttime 

operation, and especially in the data format provided by prospective standard ICESat-2 

data vegetation products, e.g., with metrics reported over 100 m of vegetation profiles.  

Forthcoming research will focus on further validation of these results and 

methods for upscaling estimates. While this study focused on Sam Houston National 

Forest, results can be extrapolated and scaled-up to regional and continental spatial 

extents. In doing so, variations in forest types and topography will need to be considered 

as these factors influence the accuracy of estimates.   
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3. MAPPING FOREST ABOVEGROUND BIOMASS WITH A SIMULATED 

ICESAT-2 VEGETATION CANOPY PRODUCT AND LANDSAT DATA
*
 

 

3.1. Introduction 

Accurate and spatially complete assessments of AGB are indicative of the extent 

to which forests contribute to the global carbon budget and can reduce uncertainties with 

the quantity and distribution of terrestrial carbon stocks (Houghton 2007; Houghton et 

al. 2007; Goetz & Dubayah 2011; Montesano et al. 2015). AGB carbon is primarily 

estimated using field inventory data where direct measurements such as tree diameters, 

are converted to AGB using biomass expansion factors or allometric regression 

equations (Brown 2002). These biomass regression equations are developed using 

allometric data collected from a sample of trees that have been destructively harvested 

and also usually over limited areas (Brown 2002; Popescu 2007). Combined with field 

measurements of AGB, remote sensing data can be used to reliably estimate AGB over 

multiple spatial scales (Popescu 2007; Nelson et al. 2017). Spaceborne light detection 

and ranging (lidar) instruments, in particular, are capable of providing measurements on 

a global scale and across areas that are otherwise difficult to access or where cost is 

prohibitive (Nelson et al. 2017). Reliable estimations of canopy height, basal area, AGB 

and aboveground carbon have been derived with spaceborne lidar (Nelson et al. 2017). 

                                                 

*
 Reprinted with permission from “Mapping forest aboveground biomass with a simulated ICESat-2 

vegetation canopy product and Landsat data” by Lana L. Narine, Sorin Popescu, Tan Zhou, Shruthi 

Srinivasan, and Kaitlin Harbeck, 2019. Annals of Forest Research, 62(1), 1-17, DOI: 

10.15287/afr.2018.1163, Copyright [2019] by "Marin Drăcea" National Research-Development Institute in 

Forestry. 
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While spatially continuous, global measurements from lidar are not yet possible, optical 

remotely sensed data can be integrated to generate spatially complete coverage of AGB 

and forest carbon at such scales (Hu et al. 2016).   

The Ice, Cloud, and land Elevation Satellite (ICESat) operated from 2003 to 

2010 and carried the Geoscience Laser Altimeter System (GLAS), a waveform lidar 

system, which provided global elevation data during the course of the mission (Zwally et 

al. 2002). Its primary objective was to capture elevation changes of the earth’s polar ice 

sheets and reduce uncertainties with the ice sheet mass balance (Zwally et al. 2002). 

GLAS produced 1064 nm and 532 nm laser pulses at a frequency of 40 Hz and 

illuminated a spot on the ground measuring approximately 60 m in diameter every 172 

m in the along-track direction (Zwally et al. 2002).  The spaceborne data collected by 

GLAS offers multidisciplinary benefits, which includes global topography and 

vegetation canopy heights (Zwally et al. 2002; Schutz et al. 2005). The literature 

demonstrates the utility of GLAS data for estimating forest heights (Baghdadi et al. 

2014; Harding & Carabajal 2005; Lefsky et al. 2007; Simard et al. 2011;) and AGB 

(Lefsky et al. 2005; Nelson et al. 2017). Furthermore, to overcome the spatial 

discontinuity of the lidar measurements, several studies have demonstrated approaches 

that integrate data from spaceborne multispectral sensors to generate wall-to-wall maps 

of AGB (Chi et al. 2015; Duncanson et al. 2010; Hu et al. 2016; Hudak et al. 2002). 

Essentially, the use of satellite imagery, such as data from Landsat sensors and from the 

moderate-resolution imaging spectroradiometer (MODIS) has been widely demonstrated 

across large-scale mapping studies.  
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With the recent launch of ICESat-2 on September 15th, 2018 (NASA 2017), up-

to-date vegetation data at near-global scales and new prospects for vegetation mapping, 

will be available. This follow-on 3-year mission has been designed to overcome some of 

the limitations associated with ICESat to provide improved sampling and increased 

spatial coverage, as described in Markus et al. (2017). Specifically, ICESat-2’s photon-

counting lidar (PCL) instrument, the Advanced Laser Altimeter System (ATLAS), splits 

a 532 nm laser pulse into three pairs of beams spaced 3.3 km apart with a 90 m pair 

spacing (Gwenzi and Lefsky 2014; Markus et al. 2017). It operates at an increased 

repetition rate of 10 kHz, facilitating denser sampling and producing smaller footprints 

than GLAS, measuring 14 m and up to 17 m every 0.7 m along the ground track (Leigh 

et al. 2015; Markus et al. 2017). Since vegetation has lower reflectance than ice surfaces 

at the 532 nm wavelength, approximately 1/3 to 1/9 of the photon returns from ice and 

snow surfaces is expected for terrestrial surfaces (Neuenschwander and Magruder 2016). 

The number of signal photons per transmitted pulse will range between 0 and 3 over 

vegetated surfaces (Neuenschwander and Magruder 2016).  However, differentiating 

signal photons from noise photons represents a challenge with photon counting systems 

like ATLAS, so effective filtering algorithms are crucial to deriving accurate estimates 

(Glenn et al. 2016). Noise levels also vary with operation times of ICESat-2, with less 

background noise associated with nighttime operation of ATLAS and increased potential 

for more accurate canopy height retrievals than from daytime retrievals (Popescu et al. 

2018).  
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One of the ICESat-2’s data products is the Land Water Vegetation Elevation or 

ATL08 product, which will provide terrain and canopy heights for non-polar regions 

(Neuenschwander et al. 2017). Terrain and height estimates will be provided at a fixed 

segment size of 100 m along the ground track. The ATL08 product will complement 

data from other space-based missions, like the Global Ecosystem Dynamics 

Investigation (GEDI) which was launched on December 5th, 2018 (NASA 2019) as well 

as data from optical sensors. The examination of approaches for AGB estimation and 

mapping could allow for development of an appropriate methodological framework for 

use as soon the ATL08 product becomes available. However, studies pertaining to the 

use of ICESat-2 data, especially its vegetation product for characterizing vegetation, are 

limited. For instance, Montesano et al. (2015) simulated ICESat-2 data and indicated 

difficulty in capturing vegetation structure where vegetation is sparse. An analysis of 

data from the Multiple Altimeter Beam Experimental Lidar (MABEL) instrument, 

ICESat-2’s demonstrator instrument (Glenn et al. 2016), highlighted a synergistic 

approach between ICESat-2 and Landsat for improving AGB estimates. Gwenzi et al. 

(2016) indicated similar performance between ICESat and ICESat-2 using MABEL data, 

in estimating heights for savanna vegetation.  

The aim of this study was to examine the use of ICESat-2 data, for generating 

wall-to-wall AGB coverage. The conceptual approach to AGB mapping has been 

highlighted in previous studies with GLAS data (Chi et al. 2015; Duncanson et al. 2010). 

However, considerable differences between the two instruments, such as measurement 

concept, spatial coverage and data products (Markus et al. 2017) warrant insights into 
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approaches for AGB mapping with expected data from ICESat-2. In this study, a 

synergistic approach with data similar to what will be provided by ICESat-2 and Landsat 

products was explored. With expected differences in noise levels associated with 

daytime and nighttime operation of ATLAS and associated impacts on canopy height 

estimation (Popescu et al. 2018), an examination of AGB mapping under different data 

scenarios are also included in this study. The primary goal of this study was to create 

wall-to-wall AGB maps at 30-m spatial resolution using simulated PCL-estimated AGB 

from known ICESat-2 track locations over Sam Houston National Forest in Texas and 

predictor variables from Landsat data. Three AGB maps were created from the following 

data scenarios: (i) Simulated ICESat-2 PCL vegetation product without the impact of 

noise (no noise scenario), (ii) Simulated ICESat-2 PCL vegetation product from data 

with noise levels associated with daytime operation of ICESat-2 (daytime scenario), and 

(iii) Simulated ICESat-2 PCL vegetation product from data with noise levels associated 

with nighttime operation of ICESat-2 (nighttime scenario). The same modeling 

technique was applied to generate AGB maps for the three scenarios with spatially 

explicit maps of model uncertainty produced for each corresponding AGB density map. 

ICESat-2 will provide global-scale sampling of forest resources and could potentially be 

leveraged to provide rich insight about the earth’s forests. At the end of its mission, 

ICESat-2 data will be used to generate ATL18 products which consist of gridded terrain 

and canopy maps (Neuenschwander et al. 2017). This study ultimately serves to support 

upcoming AGB mapping with ICESat-2 and advance our understanding of the data for 

vegetation studies. 
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3.2. Materials and Methods 

3.2.1. Study Area 

The study area is located in SHNF in south-east Texas, USA (Latitude 30° 42′ N, 

Longitude 95° 23′ W) within the Pineywoods ecoregion and consists of approximately 

48 km² of land. Summer temperatures average 28°C and the average winter temperature 

is around 12°C (USDA Forest Service 2018). The site consists of gentle slopes and 

elevations from 62 m and 105 m with a mean elevation of 85 m (Popescu 2007). 

Approximately 80% of the forests are classified as evergreen forest (Homer et al. 2015; 

MRLC 2017), which include Loblolly pine (Pinus taeda) plantations and old growth 

Loblolly pine stands (Popescu 2007) while common hardwoods found on floodplains 

and drier uplands include White Oak (Quercus alba) and Southern Red Oak (Quercus 

falca). Planned ICESat-2 track locations for the study site, provided by the mission’s 

Science Definition Team (SDT) (Neuenschwander et al. 2017), are shown in Figure 5.  
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Figure 5. ICESat-2 tract locations overlaid on 2010 National Agriculture Imagery 

Program (NAIP) aerial imagery for the study area within SHNF, Texas (inset map, 

upper left corner) with demarcation of 100 m segments along-track on inset map, 

lower left corner 

 

3.2.2. Simulated ICESat-2 Data Scenarios 

Airborne lidar data collected in November 2010 were used to simulate ICESat-2 

data along known ICESat-2 tracks over SHNF. The data were acquired along 12 flight 
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lines in the north-south direction and 19 lines flown from east to west, at around 600 m 

above-ground-level (AGL) and has a point density of 4 points per m
2
.The airborne lidar 

data and simulated ICESat-2 footprints with a center-to-center spacing of 70 cm along 

each ground track were used as input for the simulation for the data scenarios. The 

simulation algorithm, described in detail in Neuenschwander and Magruder (2016), was 

developed by the ICESat-2 SDT. To summarize, four main steps were implemented 

[22]: (1) assemble heights from discrete return points within a 7 m radius of footprint 

centers to generate a pseudowaveform (Blair & Hofton 1999), (2) construct a height 

vector for each footprint, (3) randomly determine the number of photons (x) to sample 

per shot based on design cases developed by the mission’s instrument team, and (4) 

randomly sample the vector of heights x times, weighted by the pseudo-waveform. The 

design cases developed by the mission’s instrument team indicate the expected number 

of photons per footprint vary by vegetation type and can range from 0 to 3 returns per 

pulse (Neuenschwander & Magruder 2016). The mean number of signal photons per 

footprint for SHNF was modeled at 1.9, based on the ATLAS performance model for 

temperate forests (Martino 2010). To complete the simulation, background noise, 

representing anticipated solar background noise or from the atmosphere was added to the 

data. Since solar background noise is expected to be pronounced during daytime 

operation of ICESat-2 (Degnan 2002), the datasets were generated to reflect the different 

expected noise levels: (1) daytime scenario with expected noise levels for daytime 

operation of ICESat-2, and (2) nighttime scenario with noise levels based on night 

operation of ICESat-2. Noise photons are not discernable from signal photons so the 
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implementation of effective processing algorithms is critical in order to derive accurate 

forest measurements from PCL data. Noise filtering and photon classification algorithms 

(Popescu et al. 2018) were applied to the daytime and nighttime scenarios to derive top 

of canopy and ground estimates. As presented in Popescu et al. (2018), noise filtering 

entailed a multi-level approach for minimizing noise photons and moving overlapping 

windows and cubic spline interpolation were used to classify the remaining photons. In 

terms of accuracy of the algorithms, Popescu et al. (2018) reported average RMSE 

values of 1.83 m and 2.80 m for estimated ground elevation and 2.70 m and 3.59 m for 

canopy height estimations with the nighttime and daytime scenarios respectively. 

Following the application of the noise filtering and photon classification algorithms for 

daytime and nighttime scenarios investigated in this study, estimated canopy heights 

were then retrieved by subtracting estimated ground from top of canopy values.  

The airborne lidar data for the study area was also processed to obtain above-

ground-level heights and used for PCL simulation without the addition of background 

noise (no noise scenario). In total, three simulated PCL datasets (data scenarios) were 

generated for each planned ICESat-2 track over SHNF. 

 

3.2.3. Reference AGB  

Reference AGB estimates were calculated from a canopy height model (CHM) 

derived from airborne lidar data for SHNF. The CHM was used as input in a lidar 

software application called TreeVaW, to extract forest inventory parameters for 

individual trees (Popescu et al. 2003, Popescu & Wynne 2004). TreeVaW uses a 
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variable window technique with local maximum focal filtering to extract tree heights, 

where the window size is based on the relationships between tree heights and crown 

widths from field inventory data (Popescu 2007). Popescu & Wynne (2004) indicated 

that lidar measurements processed with this technique explained 97% of the variance 

associated with mean height of dominant pine trees. For SHNF, ground measured tree 

heights and corresponding crown diameters from a total of 705 pine trees and 603 

deciduous trees from field inventories carried out in 2004 and 2009 were used to obtain 

TreeVaW coefficients to subsequently derive tree locations and measurements. The 

crown diameter of an individually located tree in the CHM was also estimated in 

TreeVaW, which involves averaging two values measured along perpendicular profiles 

from the center of a tree top by fitting a fourth-degree polynomial on each profile 

(Popescu et al. 2003, p. 564). Details of the processing approach implemented in 

TreeVaW are presented in Popescu et al. (2003) and Popescu & Wynne (2004). Output 

consisting of estimated diameter at breast height (dbh) measurements, were used to 

estimate tree-level AGB using a generalized biomass regression equation (Eq. (1)): 

AGB (kg) = exp (𝛽0 +  𝛽1 ln  (dbh)),                                              (1)                                                     

where dbh is the diameter at breast height (cm) and β0 and β1, are the parameters for the 

species group (Jenkins et al. 2003, p. 20). AGB for pines were calculated using the 

parameters for the “pine” species groups, with β0 = -2.5356 and β1= 2.4349. To 

calculate AGB for deciduous trees, parameters for the “hard maple/oak/hickory/beech” 

group were used, with β0 = -2.0127 and β1= 2.4342 (Jenkins et al. 2003, p. 20). 
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3.2.4. AGB Estimation from Simulated PCL-Derived Metrics 

For each data scenario, 100 m segments along ICESat-2 profiles were extracted 

and maximum height, mean height, height percentiles, canopy cover and canopy density 

were calculated for each segment. A segment measuring 100 m in the along-track 

direction was chosen in order to be consistent with the format of the planned ATL08 

product from ICESat-2 (Neuenschwander et al. 2017). A total of 121 segments over the 

study site were used, where one-third was randomly assigned for model testing and the 

remaining 85 segments were used for developing the models for estimating AGB. Linear 

regression models were used to relate the simulated PCL metrics for a subset of the 

segments to spatially coincident, airborne-lidar estimated AGB and the resulting models 

were evaluated with a separate test set. Details of the methodology used to estimate 

AGB and canopy cover from simulated PCL metrics are provided in Narine et al. (2019).  

Using resulting AGB models, AGB density (Mg/ha) was estimated for the 

segments over SHNF and then applied to 30 m pixels to match Landsat TM pixels. Since 

different segment lengths traverse pixels, AGB was calculated based on the portion of a 

100 m segment across a pixel and the value was extrapolated to represent the pixel size 

using the estimated area of a segment across a pixel. Pixels with segments measuring 

less than 7 m in a pixel were excluded from analysis and average pixel AGB was 

calculated in instances where there were two segments (parts) of equal lengths. The steps 

for assigning AGB to pixels were repeated for each scenario using the corresponding 

prediction equation developed from linear regression analysis. 
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3.2.5. Mapped Predictors 

Landsat data is freely available and offers global coverage (Avitabile et al. 2012). 

Landsat data, specifically, Landsat 5 Thematic Mapper (TM) was chosen for use in this 

study to avoid temporal mismatch with the simulated data and reference AGB from 

airborne lidar data acquired in November, 2010. The data is provided at spatial 

resolution of 30 m and has 7 spectral bands, which include blue, green, red and near 

infra-red (NIR). A Landsat cloud-free scene encompassing the study site, from path/row 

26/39, acquired in November, 2010 was downloaded from U.S. Geological Survey 

(USGS) Earth Explorer in GeoTIFF format and re-projected to UTM, WGS84, Zone 

15N.  The image was processed in ENVI to top-of-atmosphere (TOA) reflectance and 

vegetation indices were computed at the 30 m pixel size (Table 4). Land cover and 

canopy cover maps from the 2011 National Land Cover Database (NLCD) (Homer et al. 

2015) were also downloaded and clipped to the extent of the study site for use as 

predictor variables. Land cover and canopy cover maps were georeferenced in the same 

projection as the Landsat TM image. 

 

Table 4. Mapped predictor variables for RF regression 
Variable  Description 

Spectral Metrics from Landsat 5 TM 

 Normalized Difference Vegetation Index 

(NDVI) 
 (NIR - Red) / (NIR + Red) 

Enhanced Vegetation Index (EVI) 
 2.5 * ((NIR - Red) / (NIR + 6 * Red - 7.5 * Blue + 

1))  

Soil Adjusted Vegetation Index (SAVI)  ((NIR - Red) / (NIR + Red + 0.5)) * (1.5)  

Modified Soil Adjusted Vegetation Index 

(MSAVI) 

(2 * NIR + 1 - sqrt ((2 * NIR + 1)² - 8 * (NIR - 

Red))) / 2  

Land Cover  National Land Cover Database 2011 (NLCD 2011) 

Canopy Cover  NLCD 2011 US Forest Service Tree Canopy Cover 
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3.2.6. AGB Mapping 

The regression tree method, Random Forest (RF) (Breiman 2001), was used to 

model AGB for the three data scenarios using spectral metrics from Landsat 5 TM, 

landcover and canopy cover and estimate AGB for areas not overlaid by ICESat-2 

tracks. RF is a nonparametric modeling technique and an established approach for 

mapping AGB using multisource data (Baccini et al. 2004; Chi et al. 2015; Houghton et 

al. 2007). Using a bootstrap sample of the training data, the best split is made at the root 

node using a random sample of the predictors (Liaw & Wiener 2002). Another sample of 

the variables is taken at the other node and the process is repeated until the regression 

tree grows as large as possible. The process is repeated with a new bootstrap sample and 

the data is predicted by averaging the predictions of all trees (Liaw & Wiener 2002). The 

un-sampled training data at each bootstrap iteration, called out-of-bag or OOB data, is 

used to generate OOB model predictions which are aggregated to calculate the error rate 

(Liaw & Wiener 2002). RF was carried out with the ModelMap R package (Freeman et 

al. 2018) which calls randomForest R package (Freeman et al. 2018).  ModelMap was 

used to validate the model with OOB predictions on the training data and also with a 

separate test set and apply the model to create the final AGB map for each scenario 

(Freeman et al. 2018). About 70% of the data was randomly assigned to the training 

dataset and remaining 30% was allotted to the test set and used for model evaluation. As 

a result, the training and test set for each scenario consisted of 1448 and 620 30-m pixels 

respectively, equating to approximately 3% and 1% of the pixels which constitute the 

study area. A total of 1000 regression trees were built with the training data for each 
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scenario and results were used to assign AGB values to each 30 m pixel. The final AGB 

maps were masked using the land cover map, where AGB density in non-forest areas 

(NLCD classes: water, developed, barren, grassland/herbaceous, pasture and emergent 

herbaceous wetlands) was set to 0 Mg/ha.  

Since trees in a RF model are independent, the standard deviation of individual-

tree predictions can be calculated at the pixel-level to produce a measure of prediction 

variability (Freeman et al. 2016). According to Freeman et al. (2016), standard deviation 

of predictions for trees can be used as a measure of uncertainty in resulting maps. High 

uncertainty values indicate a lack of agreement among trees (Freeman et al. 2016, p. 15), 

with some trees predicting high AGB and others low AGB values while low uncertainty 

values translate to agreement in predictions from individual trees for a pixel. RF 

uncertainty maps corresponding to final AGB maps were generated.  

Results were also compared with AGB estimated from airborne lidar data over 

the study. The reference AGB estimates derived from airborne lidar data were 

aggregated by summation at a 30 m resolution and pixel AGB values were converted to 

AGB density (Mg/ha). Cells spatially coincident with the original test datasets were then 

selected and predicted AGB were compared with the reference AGB pixels. AGB 

predictions for the three data scenarios were compared using RMSE and R
2
 metrics. 
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3.3. Results 

3.3.1. Estimated AGB from Simulated PCL Metrics 

Details of results from regression analysis used to relate simulated PCL height 

metrics, canopy cover and canopy density for 100 m segments to reference airborne 

lidar-derived AGB are presented in Narine et al. (2019). To summarize, models had high 

accuracies and yielded RMSE values of 19.16 Mg/ha, 25.35 Mg/ha, and 19.23 Mg/ha for 

the no noise scenario, daytime scenario and nighttime scenario respectively. The 

prediction equation for the simulated dataset without noise used mean height and a 

canopy density variable for 15 m to 20 m height bin and explained 79% of the variance 

in airborne lidar-estimated AGB.  The absence of noise photons and the applied photon 

detection rate for the forest being studied rendered this dataset the best case scenario. 

Given that background noise represents a challenge for photon counting systems (Glenn 

et al. 2016) estimation models associated with daytime and nighttime operation times 

offer more insight about the potential AGB estimation from ICESat-2 data. AGB models 

with the daytime and nighttime scenarios used the same variables; the 10th and 90th 

height percentiles and canopy cover calculated as the proportion of returns above 4.6 m. 

With the daytime scenario, the variables explained 63% of the variance in airborne lidar-

derived AGB while the same variables calculated with the simulated nighttime dataset 

yielded a R
2
 of 0.79. 
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3.3.2. RF Predicted AGB 

Using the simulated PCL-estimated AGB as the dependent variable and spectral 

metrics, land cover and canopy cover, the RF regression tree models explained 49%, 

39% and 47% of the variance with OOB data for the no noise, daytime and nighttime 

scenarios respectively.  RMSEs estimated using OOB testing were 20.59 Mg/ha, 19.98 

Mg/ha and 19.25 Mg/ha. With the test data, the predictive abilities of models, 

represented by the R
2
 values, were 0.51, 0.42 and 0.49. Overall, the models tended to 

underestimate cells with high biomass (Figure 6). With test data, the RMSE values for 

the no noise and daytime scenarios were 19.69 Mg/ha and 19.67 Mg/ha, and slightly 

improved for the nighttime scenario, with a RMSE of 19.31 Mg/ha. The relationship 

between RF predicted AGB and AGB estimated from airborne lidar data over the study 

site yielded lower R
2
 values and higher RMSEs and similar results for the three 

scenarios. When rounded to the nearest whole number, the RMSE was 35 Mg/ha with 

the no noise, daytime and nighttime scenarios while the variance explained was 46% 

with the no noise and nighttime scenarios and 45% with the daytime scenario (Table 5). 

The most important predictor of AGB for the three data scenarios was canopy cover 

followed by NDVI and land cover. Variable importance was almost split between NDVI 

and land cover while SAVI and MSAVI were the least important predictors of AGB. 

Average AGB values from final AGB maps (Figures 7-9) generated with the RF 

regression models were 53.05 Mg/ha, 50.73 Mg/ha and 52.39 Mg/ha for the no noise, 

daytime and nighttime scenarios respectively. In comparison, average AGB of forests in 

the training data were 52.09 Mg/ha, 51.21 Mg/ha, and 52.24 Mg/ha. With this data, AGB 
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ranged from 0 Mg/ha to 150.64 Mg/ha for the no noise scenario, 0 Mg/ha to 139.61 

Mg/ha, and 0 Mg/ha to 119.75 Mg/ha for the daytime and nighttime scenarios 

respectively. AGB predictions for 30 m pixels were within the range of the data but 

tended to underestimate AGB. AGB density predictions of forests in the study site 

ranged from 0.72 Mg/ha to 105.41 Mg/ha for the no noise scenario, 6.62 Mg/ha to 83 

Mg/ha and 1.97 Mg/ha to 83.55 Mg/ha for the daytime and nighttime scenarios 

respectively.  

Visual assessments of AGB maps revealed similarities in the spatial distribution 

pattern of predicted AGB for the three scenarios (Figures 7-9). However, the daytime 

and nighttime scenarios appeared to have more areas with AGB densities ranging from 

20-40 Mg/ha than the no noise scenario while the map for the daytime scenario exhibited 

the greatest predominance of relatively low AGB values. To demonstrate, predicted 

AGB estimates with the three scenarios for a highlighted portion of the study area, is 

shown on Figure 10. Within the highlighted extent, predicted AGB for the daytime and 

nighttime scenarios exhibited lower AGB estimates than the no noise scenario. 

Compared to the other scenarios, lower AGB estimates were most prevalent with the 

daytime scenario, represented by the 20-40 Mg/ha range. Overall, AGB maps 

correspond to vegetation trends present with higher AGB in the southern portion of the 

study site primarily occupied by mature pines and lower biomass in the northern parts, 

including areas covered by young pine stands. At the pixel level, predictions of AGB 

from individual trees that varied greatly led to a high standard deviation of the 

predictions. Corresponding RF uncertainty maps (Figures 7-9) for the scenarios highlight 
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pixels with particularly large differences in individual tree predictions, especially for the 

daytime scenario. RF uncertainties highlighted in Figure 10 emphasize the predominance 

of high standard deviation of AGB predictions for the daytime scenario, compared to the 

other data scenarios. In this area, the 10-20 Mg/ha range was most prevalent with the no 

noise scenario followed by the nighttime scenario. In comparison, there were 

substantially more pixels within the 20-30 Mg/ha range, indicative of greater 

uncertainty, for the daytime scenario (Figure 10).   

 

Table 5. Test set error statistics from RF models predicting AGB and relationships 

with aggregated airborne lidar-derived estimates of AGB under three scenarios; no 

noise, daytime and nighttime scenarios 

 RF Model Performance with Test Set Relationship with Reference AGB 

Scenario R² RMSE R² RMSE 

No Noise 0.51 19.69 Mg/ha 0.46 34.99 Mg/ha 

Daytime 0.42 19.67 Mg/ha 0.45 35.27 Mg/ha 

Nighttime 0.49 19.31 Mg/ha 0.46 34.93 Mg/ha 
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Figure 6. (a) Simulated PCL AGB estimated from linear regression vs RF predicted 

AGB with test data for the no noise scenario; (b) Simulated PCL AGB estimated 

from linear regression vs RF predicted AGB with test data for the daytime scenario 

(c) Simulated PCL AGB estimated from linear regression vs RF predicted AGB 

with test data for the nighttime scenario 
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Figure 7. (a) RF predictions of AGB density at a 30 m spatial resolution for the no 

noise scenario; (b) RF uncertainty at a 30 m spatial resolution for the no noise 

scenario 
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Figure 8. (a) RF predictions of AGB density at a 30 m spatial resolution for the 

daytime scenario; (b) RF uncertainty at a 30 m spatial resolution for the daytime 

scenario 
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Figure 9.  (a) RF predictions of AGB density at a 30 m spatial resolution for the 

nighttime scenario; (b) RF uncertainty at a 30 m spatial resolution for the 

nighttime scenario 
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Figure 10. Spatial distribution of RF predicted AGB and corresponding AGB 

uncertainty for highlighted section in the study area (inset map, upper left corner) 

for the a. no noise scenario, b. daytime scenario, and c. nighttime scenario 

 

3.4. Discussion 

The mapping of AGB has been identified as an approach to advance the 

knowledge about the terrestrial aspect of the carbon cycle (Le Toan et al. 2011). 
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Consequently, is it necessary to develop approaches for characterizing the spatial 

distribution of AGB and forest carbon. ICESat-2 presents an opportunity to obtain large-

scale coverage about vegetation through the collection of data along transects on the 

earth’s surface. Despite the lack of spatially complete data that will be measured from 

this source, complete coverage offered by Landsat or MODIS sensors may be leveraged 

to achieve comprehensive estimates of forest attributes. This study presents one 

approach for deriving wall-to-wall coverage of AGB from ICESat-2. Two sets of models 

were used; one for modeling the relationship between simulated PCL metrics for 100 m 

segments and reference airborne lidar-derived AGB and another set for relating mapped 

predictor variables to simulated PCL-estimated AGB. Using nonparametric regression 

models, AGB density was extrapolated from 3% of the 30 m pixels which comprise the 

study site to achieve spatially explicit AGB values. While the study area was focused on 

the SHNF, this approach is applicable to scaling up to larger spatial extents. The use of 

30 m map resolution is particularly useful for upscaling purposes with the availability of 

spatially comprehensive data, such as Landsat imagery and NLCD products. In doing so, 

other variables may also be investigated for improving AGB estimates. For example, 

information from optical imagery such as Tasseled cap indices, and ancillary data such 

as elevation and slope may be incorporated for regional scale mapping (Zald et al. 2016). 

Additionally, vegetation indices from multi-date satellite imagery could be investigated 

when upscaling to larger extents. To demonstrate, Li et al. (2015) highlighted the use of 

vegetation indices from multi-date imagery during the growing season for achieving 

more reliable results for regional AGB estimation.  It is also important to note that 
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coarser map resolutions may provide good accuracies. To exemplify, Deo et al. (2018) 

investigated the impact of spatial resolution on the accuracy of regional scale AGB maps 

encompassing the eastern USA from Landsat-derived parameters and concluded that 

grid sizes up to 1 km provided reasonable accuracies. In this study, validation statistics 

for the AGB models indicated RMSEs ranging from 69.34 Mg/ha for the 30 m grid size, 

up to 80.78 Mg/ha with the 1000 km grid size but with similar correlation (r) results 

between predictions and the reference data (Deo et al. 2018).  

Canopy cover has proven to be a valuable predictor of AGB in this study. 

Canopy cover calculated from simulated PCL segments was a significant predictor of 

airborne lidar-derived AGB and results from the RF models produced in this study 

indicated NLCD canopy cover as the most important predictor of AGB, regardless of the 

data scenario. Alternative approaches to generating AGB maps may include 

extrapolating canopy cover estimated in the ATL08 product and then using this as a 

predictor variable in RF models. A similar approach with GLAS parameters is presented 

in Hu et al. (2016), where RF was used to generate spatially continuous GLAS 

parameters and then combined with mapped predictors including NDVI and landcover, 

to estimate global AGB at a 1-km resolution. In the case of extrapolating canopy cover 

and then predicting AGB, the possibility for simultaneously producing maps of these 

parameters will be beneficial as both represent fundamental attributes of forest 

vegetation structure. 

An advantage of using RF for modeling is the possibility of using OOB as part of 

model evaluation (Freeman et al. 2016). An evaluation of RF model performance for the 
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no noise, daytime and nighttime scenarios with a separate test set yielded similar results 

to those provided with OOB data; R
2
 values were 0.51, 0.42, and 0.49, compared to 0.49, 

0.39, and 0.47 with OOB testing. RMSE values also ranged between 19 Mg/ha and 21 

Mg/ha with the OOB and independent test set. Overall, results from both sources 

emphasized the ability of the nighttime scenario to out-perform the daytime scenario. RF 

also provided an indicator of uncertainty in the resulting maps, estimated as the 

variability of predictions from 1000 independent trees used to estimate pixel AGB. A 

comparison of the AGB and AGB uncertainty maps for the three scenarios highlighted 

areas with lower AGB predictions and corresponding higher uncertainty ranges for the 

daytime versus the nighttime and no noise scenarios. Factors that may contribute to final 

AGB uncertainty include allometric models for reference AGB estimation, input data 

errors (e.g. NLCD, Landsat reflectance) and methods used for upscaling AGB to the 

pixel size for modeling. Prospective studies could involve a comprehensive uncertainty 

analysis of AGB estimates predicted from actual ICESat-2 data to ascertain error 

originating from different sources.  

GEDI commenced its two-year mission in November, 2018 and was designed 

specifically to provide data for characterizing three-dimensional vegetation structure 

(NASA 2019). While ICESat-2 will collect measurements between 88° north and south 

latitudes during its three-year duration (Markus et al. 2017), GEDI will provide 

waveform observations between 52° north and 52° south latitudes (Marselis et al. 2016). 

Hence, the adoption of a synergistic approach between ICESat-2 and GEDI may support 

a more accurate quantification of forest attributes, and specifically forest AGB. Future 
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research should investigate potential synergies between ICESat-2 and GEDI for 

producing an AGB product. 

 

3.5. Conclusions 

Up-to-date and spatially explicit assessments of AGB density can support the 

monitoring of forest carbon, contributing to reduced uncertainties with the carbon budget 

and an improved understanding of changes in terrestrial carbon storage. In this study, we 

present an approach for mapping AGB with ICESat-2 which can be summarized as 

follows: (i) simulating and processing of ICESat-2 data to generate three data scenarios 

in a format similar to the ATL08 product, (ii) developing relationships between the 

simulated vegetation product data and airborne-lidar derived AGB, and then between 

predicted AGB and mapped predictors consisting of spectral metrics from Landsat 5 

TM, landcover and canopy cover using RF, and (iii) mapping AGB at 30-m spatial 

resolution and producing a corresponding measure of uncertainty using the resulting RF 

models. Findings highlight canopy cover as the most important predictor of AGB and 

indicate similarities in the predictive capabilities of RF models for the three settings 

analyzed, and especially for the nighttime scenario which outperformed the daytime 

scenario. Overall, the methodology is conducive to achieving wall-to-wall AGB 

coverage at much larger extents and in doing so, other variables such as topographic, 

climatic, and spectral indices may be considered for improving AGB estimates. Efforts 

focused on the contributions of error from different sources would also be needed to 

ascertain final AGB uncertainties. In addition, the recent launch of GEDI will advance 
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the capability of assessing AGB, thus highlighting the need for investigations that 

support a synergistic approach between ICESat-2 and GEDI to characterize AGB and 

other forest attributes. Furthermore, while spatial coverage from both ICESat-2 and 

GEDI are not possible, the integration of spatially comprehensive data, like Landsat 

optical imagery, can potentially facilitate a more comprehensive and accurate AGB 

product. 
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4. SYNERGY OF ICESAT-2 AND LANDSAT OPTICAL IMAGERY DATA FOR 

MAPPING FOREST ABOVEGROUND BIOMASS WITH DEEP LEARNING 

 

4.1. Introduction 

As forests continue to be altered and lost as a result of land use changes, among 

other causes, it has become increasingly vital to monitor their structure and extent to 

better understand the effects including those on the global carbon cycle and climate (Hall 

et al. 2011).  Up-to-date and accurate maps of vegetation structure and AGB support 

sustainable management of forest resources (Zald et al. 2016), can be used to estimate 

other terrestrial carbon components (e.g. belowground biomass) (Goetz and Dubayah 

2011), reduce uncertainties with carbon exchanges and the carbon budget (Goetz and 

Dubayah 2011), and facilitate an improved understanding of the carbon cycle (Hall et al. 

2011). Light detection and ranging (lidar) remote sensing technology and specifically 

airborne and spaceborne lidar, have demonstrated the capability of estimating and 

mapping AGB (e.g. Hu et al. 2016; Chi et al. 2015; Nelson et al. 2017).  Lidar systems 

measure the travel time for an emitted pulse of laser energy to reach the surface and then 

reflect back to the sensor, which facilitates a distance measurement and subsequently, 

unique XYZ location of or near to the surface (Glenn et al. 2016; Popescu 2007).  There 

are currently two earth-orbiting lidars which were launched in 2018; the Advanced 

Topographic Laser Altimeter System (ATLAS) onboard the Ice, Cloud and land 

Elevation Satellite (ICESat)-2 (NASA 2017) and the Global Ecosystem Dynamics 

Investigation (GEDI) lidar attached to the International Space Station (ISS) (Stysley et 
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al. 2016). The data collected by these instruments may be used to estimate or derive 

forest vegetation parameters, including canopy heights and AGB, and could therefore 

play a crucial role in assessing and monitoring forest resources up to global scales 

(Nelson et al. 2017).   

ICESat-2 will operate between 88° north and south latitudes during its three-year 

mission and will provide a nine times increase in spatial coverage than its predecessor 

(Markus et al. 2017) covering more of the earth’s surface than GEDI which operates in 

mid latitudes, between 52° north and 52° south latitudes (Marselis et al. 2016; Sun 

2012). While ATLAS onboard ICESat-2 was primarily designed to determine changes in 

ice sheet elevation and mass, it will provide information about vegetation that may be 

used to estimate AGB. ATLAS is a photon counting system, operating in the visible 

wavelengths, at 532 nm (Glenn et al. 2016).  It generates 3 pairs of tracks, with each pair 

approximately 3.3 km apart and each track within a pair separated by 90 m (Markus et 

al. 2017). Lidar footprints are produced every 70 cm in the along-track direction and 

measure approximately 14 m in diameter (Neuenschwander and Magruder 2016).  Given 

the unprecedented coverage and spatial detail from ICESat-2, translating ICESat-2 

measurements to AGB estimates would allow for large-scale AGB and forest carbon 

assessments. 

Variables derived from lidar data, particularly height metrics (Shao et al. 2017) 

and horizontal canopy structure metrics such as canopy cover are related to biomass 

reference data to estimate AGB (Lu et al. 2016). As the first and only satellite lidar 

operating from 2003 to 2009, the Geoscience Laser Altimeter System (GLAS) sensor 
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aboard ICESat acquired data that was utilized to estimate AGB (Popescu et al. 2011) and 

facilitated the mapping of forest resources at global scales (Hu et al. 2016; Lefsky 2010; 

Simard et al. 2011). While satellite lidar, including ICESat-2 and GEDI, will not provide 

spatially comprehensive measurements, the availability of other remotely sensed data, 

such as passive optical sensor data could be integrated to achieve a full coverage AGB 

product. For instance, in a study by Hu et al. (2016), a global wall-to-wall AGB product 

at 1 km resolution was produced using a combination of GLAS data and Moderate 

Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference 

Vegetation Index (NDVI) and land cover, and climatic and topographic variables. The 

random forests (RF) algorithm was used to extrapolate GLAS parameters and develop 

regression models with the spatially continuous variables. Chi et al. (2015) also used RF 

regression models to generate a nationwide wall-to-wall AGB map in China by 

extrapolating GLAS footprint-estimated AGB and MODIS data.  

RF (Breiman 2001) is a machine learning technique that has been widely used for 

producing spatially explicit AGB estimates with multisource data (e.g. Baccini et al. 

2004; Chi et al. 2015; Hu et al. 2016). The application of nonparametric machine 

learning regression algorithms, such as RF, Support Vector Regression (SVR) and k-

nearest neighbor (k-NN) have become more predominant and demonstrate the ability to 

outperform popular parametric approaches used with remotely sensed data, like multiple 

linear regression (MLR) (Garcia-Gutierrez 2015; Tian et al. 2014; Wang et al. 2018). 

More recently, Deep Learning (DL) has been highlighted as a feasible approach for 

handling complex data (Hatcher and Yu 2018) with many examples in the remote 



 

92 

 

sensing literature focusing on classification and object detection tasks (Lv et al. 2019; 

Shafaey et al. 2019; Xiang et al. 2017). Few studies utilize DL models for forest 

parameter estimation and mapping, although promising results with lidar-derived 

variables have been reported (Shao et al. 2017). For instance, Garcia-Gutierrez (2016) 

indicated that autoencoders increased the accuracy of MLR predictions by 15-30%. Shao 

et al. (2017) found that a DL model, specifically stacked sparse autoencoder (SSAE) 

model, outperformed multiple stepwise linear regression, k-NN, support vector machine, 

back propagation neural network and random forest models, for estimating airborne 

lidar-derived AGB with variables from Landsat 8 Operational Land Imager (OLI) and 

synthetic-aperture radar (SAR) backscattering coefficients.  

Deep Learning is a subset of machine learning that stems from cognitive and 

information theories which aim to mimic the learning process of neurons in the human 

brain (Hatcher and Yu 2018, p. 24412). DL is the application of multi-neuron, multi-

layer neural networks to learn data representations (Hatcher and Yu 2018, p. 24413). In a 

neural network layer consisting of multiple nodes, each neuron is initiated with a 

different weight and neurons simultaneously learn the input data (Hatcher and Yu 2018). 

Weights are updated based on a loss function and in the case of multiple layers, each 

neuron learns from all output from preceding layers. The use of deep learning 

architectures to any type of data, including numerical, visual and audio has propelled DL 

to a dominant position for developing predictive systems (Hatcher and Yu 2018). 

Regression is one of the two primary supervised learning tasks carried out with DL, with 

classification being the second (Hatcher and Yu 2018) and more popular task undertaken 
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(Trier et al. 2018). Deep neural networks (DNNs) in particular, are capable of extracting 

combinations of the input that are not easily described by humans (Trier et al. 2018, p. 

338). Given the capabilities of DL and increasing amounts data from remote sensing 

systems, including current and upcoming space lidar missions, DL models could be 

investigated for modeling and mapping AGB and other forest structural parameters.  

One of ICESat-2’s data products is ATL08 or Land-Vegetation along-track 

products which will consist of terrain heights, canopy heights and canopy cover 

estimates for non-polar regions covered by the satellite (Neuenschwander et al. 2017; 

Neuenschwander and Pitts 2019). Estimates will be provided at a step-size of 100 m in 

the along-track direction and the products will be used as input to generate gridded 

heights and canopy cover products or ATL18 after the three-year mission (Markus et al. 

2016; Neuenschwander et al. 2017). Several studies demonstrate the use of satellite lidar 

(GLAS) data for mapping forests (e.g. Baghdadi et al. 2014; Chi et al. 2015; Harding & 

Carabajal 2005; Hu et al. 2016; Lefsky et al. 2007, Simard et al. 2011, Nelson et al. 

2017) and fewer studies have compared techniques for modeling AGB with space lidar 

(e.g. Liu et al. 2017). However, literature focused on ICESat-2 data for vegetation 

studies (Glenn et al. 2016; Gwenzi et al. 2016; Montesano et al. 2015; Narine et al. 

2019; Neuenschwander and Magruder 2016; Popescu et al. 2018) is limited, including 

studies aimed at exploring approaches for AGB mapping with the data or its products 

(Narine et al. in review).   

Over the next two years, ICESat-2 will sample the earth’s surface to provide a 

grid of measurements (Markus et al. 2016, p. 269) that will enable estimation of a forest 
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attributes. Rather than waiting for data, this study investigated an approach for mapping 

AGB using simulated ICESat-2 data over two years of preplanned track locations and 

Landsat data, in preparation for utilizing the actual data for vegetation studies as soon as 

it becomes available. Given the growing interest in DL (Hatcher and Yu 2018) and 

potential of DNNs (Trier et al. 2018), a methodology for mapping aboveground biomass 

(AGB) using regression-based feedforward neural network models was explored. Even 

though the topology of a neural network substantially affects the results (Stathakis 

2009), the optimum numbers of layers and nodes are not automatically selected. Thus, a 

primary objective of this study was to investigate parameter settings that would yield 

optimum predictive performance, specifically the number of hidden neurons and hidden 

layers as well learning rates. Acknowledging expected differences in noise levels 

associated with daytime and nighttime operation of ATLAS and associated impacts on 

canopy height estimation (Popescu et al. 2018), an examination of AGB mapping under 

different data scenarios was carried out. Thus, parameter tuning was undertaken 

separately for each scenario and the best models were applied to generate the AGB maps 

at 30 m spatial resolution. AGB maps were produced for the following data scenarios: (i) 

daytime scenario, (ii) nighttime scenario, and (iii) without the impact of noise (no noise 

scenario). 
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4.2. Materials and Methods 

4.2.1. Study Area 

The study was carried out in in Sam Houston National Forest located in south-

east Texas, USA (Latitude 30° 42′ N, Longitude 95° 23′ W). Elevations range from 62 m 

to 105 m, with an average of 85 m (Popescu 2007). Approximately 58% of the region or 

80% of its forested area (NLCD classes: deciduous forest, evergreen forest, mixed forest, 

and woody wetland) is classified as evergreen forests (Homer et al. 2015; MRLC 2017) 

and the site is predominated by pine forests, which include Loblolly pine (Pinus taeda) 

plantations and old growth Loblolly pine stands (Popescu 2007). Planned ICESat-2 track 

locations for the first two years of the mission over the study area (Neuenschwander et 

al. 2017) are depicted on Figure 11. 
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Figure 11. ICESat-2 tract locations overlaid on 2010 National Agriculture Imagery 

Program (NAIP) aerial imagery for the study area within SHNF, Texas (inset map, 

upper left corner) 

 

4.2.2. Simulated ICESat-2-estimated AGB 

Discrete return lidar data acquired in November 2010 over SHNF with a point 

density of 4 points per m
2
, were used to simulate ICESat-2’s photon-counting lidar 

(PCL) data. Planned track locations, ICESat-2 footprint generator and simulator were 

made available by the mission’s Science Definition Team (SDT).  Footprints spaced 70 
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cm apart were generated along each planned ICESat-2 track and photons were simulated 

using the airborne lidar data. A detailed description of the PCL simulation is provided in 

Neuenschwander and Magruder (2016). To summarize, discrete return lidar points 

falling each generated ICESat-2 footprint along tracks were used to generate a pseudo-

waveform (Blair and Hofton 1999), a vector with heights or elevation was then 

constructed for each footprint, the number of photon based on design cases were 

randomly determined and random sampling of height vector weighted by the pseudo-

waveform was carried out (Neuenschwander and Magruder 2016). The average number 

of signal photons per shot was modeled at 1.9, based on the ATLAS performance model 

for temperate forests (Martino 2010) and the algorithm returned up to 3 photons per 14-

m diameter footprint.  

Anticipated noise photons, representative of solar background noise and effects 

of atmospheric scattering (Moussavi et al. 2014), were added to the simulated dataset.  

Two datasets were generated to represent the following: (1) daytime scenario with 

expected noise levels for daytime operation of ICESat-2, and (2) nighttime scenario with 

noise levels based on night operation of ICESat-2. Popescu et al. (2018) devised and 

applied novel noise filtering and photon classification algorithms to simulated ICESat-2 

data and reported average RMSE values of 2.70 m and 3.59 m for estimating canopy 

heights. PCL data processing algorithms developed by Popescu et al. (2018) were 

applied to the data to remove noise photons and classify photons into top of canopy 

points and ground surface elevation points; subtracting the latter from the former yielded 

tree canopy height values within footprints. Another PCL simulation using above-
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ground-level heights was carried out and no noise photons were added to the data. In 

total, data for three scenarios were analyzed; 1) daytime scenario, 2) nighttime scenario, 

and 3) no noise scenario.  

Data representative of ICESat-2’s ATL08 product was used for modeling 

relationships with spatially coincident airborne-lidar derived AGB. To maintain 

consistency with the ATL08 format, 100 m segments were extracted from the simulated 

datasets and height percentiles, canopy cover and canopy density metrics were 

calculated (Narine et al. 2019). The utilization of the simulated ICESat-2 PCL vegetation 

product for estimating AGB and airborne lidar-derived canopy cover are presented in 

Narine et al. (2019). To summarize, linear regression models relating simulated PCL 

metrics for a subset (n = 85) of the segments to airborne lidar-derived AGB were 

developed and their performance assessed with a separate test set (n = 36).  AGB models 

yielded RMSEs of 25.35 Mg/ha, 19.23 Mg/ha, and 19.16 Mg/ha and R
2
 values of 0.63, 

0.79, 0.79 for the daytime scenario, nighttime scenario and no noise scenario 

respectively (Narine et al. 2019).   

Using AGB models developed with the simulated PCL vegetation product over 

SHNF, AGB density (Mg/ha) was estimated for each segment over the study site and 

applied to 30 m pixels to match Landsat TM pixels (Narine et al. in review). AGB was 

assigned based on the portion of a 100 m segment across a pixel and the value was 

extrapolated to represent the pixel size using the estimated area of a segment across a 

pixel. Segments less than 7 m in a pixel were excluded from analysis and average pixel 

AGB was calculated in instances where there were two segments (parts) of equal lengths 
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traversing a pixel. The steps for assigning AGB density to pixels were repeated for each 

data scenario using the corresponding prediction equation developed from linear 

regression analysis. Then, 70% of the data (pixels) was randomly assigned to the training 

dataset and remaining 30% was allotted to the test set and used for model evaluation. 

The training and test set for each scenario consisted of 1448 and 620 30-m pixels 

respectively. 

 

4.2.3. Mapped Predictors 

A Landsat 5 Thematic Mapper (TM) cloud-free scene encompassing the study 

site, from path/row 26/39 and acquired in November, 2010 was downloaded from U.S. 

Geological Survey (USGS) Earth Explorer in GeoTIFF format and re-projected to UTM, 

WGS84, Zone 15N.  The image was processed in ENVI to top-of-atmosphere (TOA) 

reflectance and vegetation indices were computed. Land cover and canopy cover maps 

from the 2011 National Land Cover Database (NLCD) (Homer et al. 2015) were also 

downloaded and georeferenced in the same projection as the Landsat TM image. The 

predictor variables used for AGB modeling were: 

 Spectral Metrics from Landsat 5 TM-  

o Normalized Difference Vegetation Index (NDVI): (NIR - Red) / (NIR + 

Red) 

o Enhanced Vegetation Index (EVI): 2.5 * ((NIR - Red) / (NIR + 6 * Red - 

7.5 * Blue + 1))  
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o Soil Adjusted Vegetation Index (SAVI): ((NIR - Red) / (NIR + Red + 

0.5)) * (1.5)  

o Modified Soil Adjusted Vegetation Index (MSAVI): (2 * NIR + 1 - sqrt 

((2 * NIR + 1)² - 8 * (NIR - Red))) / 2 

 NLCD 2011 land cover map 

 NLCD 2011 US Forest Service tree canopy cover 

 

4.2.4. Deep Neural Networks (DNNs) 

DL via neural networks is comprised of stacked layers that facilitate learning 

successive layers of representations of the input data (Chollet 2018, p. 8). Essentially, a 

layer transforms the data, as specified by weights, which are referred to as the 

parameters of the layer (Chollet 2018). The process of learning entails finding the 

optimum values of the weights in each layer of a neural network, which are adjusted by 

an optimizer, based on the loss score. A loss function measures the difference between 

the observed values and predictions from the neural network and adjustments with the 

optimizer serves to lower the loss score (Chollet 2018). Network weights are randomly 

initialized resulting in a high loss score but are adjusted as each example (batch) is 

processed and iterated several times to produce weights that lower the loss function 

(Chollet 2018, p. 11). Essentially, the gradient of the loss, given the combination of the 

weights, is computed and parameters are subsequently moved to an extent defined by the 

learning rate, to reduce the loss for the batch (Chollet 2018). In terms of optimization, 

that there are several methods of reducing loss through gradient descent to improve 
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network accuracy. An activation function can also be to each layer in the model, 

enabling the layer to learn non-linear transformations of the data. For all neural network 

architectures developed in this study, the RMSProp optimizer and rectified linear unit 

(ReLU) as the activation function, which are regarded as good options for different tasks 

(Chollet 2018), were used. The activation function 𝑔 is applied element-wise defined by 

the function 𝑔(𝑧) =  𝑚𝑎𝑥{0, 𝑧} (Goodfellow et al. 2016; Trier et al. 2018). Assuming ℎ 

is a vector of hidden units in a layer, then ℎ = 𝑔(𝑊T𝑥 + 𝑐), where 𝑊 are the weights of 

the transformation and 𝑐 are the biases (Goodfellow et al. 2016, p. 168), such that each 

element in the hidden layer has a different weight and bias parameter (Bengio 2009). For 

all models, the loss function was defined with the mean squared error (MSE), learning 

rate was initially set to 0.001and epochs and batch size were 100 and 32 respectively. All 

neural models consisted of one input layer with 6 neurons (one for each predictor) and 

one output node for the predicted AGB.  

Determining the architecture of a neural network affects its ability to learn the 

data (Bengio 2009) and ultimately impacts its predictive capacity. Specifically, 

determining the number of hidden layers and nodes are critical (Doukim et al. 2010) 

since network topology can have sizeable impacts on the results (Stathakis 2009).  A 

trial and error approach is common for determining network topology while studies have 

presented techniques for identifying an optimal network structure for specific 

applications. For example, Doukim et al. (2010) highlighted a course to fine search 

technique for determining the number of hidden neurons in a multi-layer perceptron 

(MLP) (feedforward) neural network for skin detection from images. Doukim et al. 
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(2010) used a binary search, with hidden neurons set to 1, 2, 4, 8, 16, 32, 64, and 128 

and then a sequential search around a specific range indicated by the binary search to 

fine-tune the process of finding the number of hidden neurons that resulted in the 

smallest MSE. In this study, a network structure consisting of 112 hidden neurons was 

used to construct a neural network for skin detection. In another study, Guang-Bin 

(2003) demonstrated that a two layer feedforward neural network is sufficient for 

learning with minimal error and suggests that the number of nodes in the first layer is 

given by: 

√(m + 2)N + 2√N/(m + 2) 

 

And the number of hidden nodes in the 2nd layer is defined by 

 

m√N/(m + 2) 

 

Where N is the number of samples and m is the number of output neurons.  

For comparison purposes, the equations for determining the number of hidden nodes in 

the first and second hidden layers proposed by Guang-Bin (2003) were applied to the 

training dataset, which equates to 98 neurons in the first layer and 20 hidden nodes in the 

2nd layer. Since determining optimum network structure was a primary focus in order to 

understand the applicability of deep architectures with simulated ICESat-2 data, the 

number of hidden neurons and layers were varied. Exploratory analysis involving 

gradual increases in the number of hidden neurons in the first hidden layer (e.g. binary 

search in Doukim et al. 2010) did not result in substantial changes in model 

performance. As a result, the number of neurons were varied in intervals of 20 up to 200 
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neurons and then in intervals of 100 with a maximum of 1000 hidden neurons in the first 

hidden layer. Results from the application of each trained model to the separate test set 

were compared RMSE and R
2 

values. Guang-Bin (2003) proposed a neural network 

architecture consisting of a large first hidden layer and a second hidden layer that is 

considerably narrower. To adopt this feature to the network architecture for deeper 

models, successively narrow layers were applied. A second hidden layer was added to 

neural network that gave the highest R
2 

and lowest RMSE value in each scenario and the 

number of neurons was varied in increments of 20 up to the number of hidden neurons in 

the previous layer. Layers were added until there were no further improvements in 

model performance.  

With the final selected network structure for each scenario, the learning rate used 

by the RMSprop optimizer was changed from 0.001 to 0.1, 0.01, and 0.0001 (Xie et al. 

2017)  and model performance with the test set were compared for each hyperparameter 

setting. Regarded as the most important hyperparameter of DL algorithms (Goodfellow 

et al. 2016, p. 424), the learning rate affects the model’s capacity, as indicated by model 

error. Too large to too small learning rates could increase training error as well as 

training times in the case where rates are too small and suboptimal. Models yielding the 

lowest RMSE and highest R
2
 for each scenario were used to generate AGB maps. 

Modeling was done with the Keras (Chollet 2018) with TensorFlow backend in R and 

data visualization, with ArcGIS 10.4 software.  
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4.3. Results 

An assessment of neural networks predicting simulated PCL-estimated AGB for 

the daytime, nighttime and no noise data scenarios, indicated models with 300 hidden 

neurons, 600 hidden neurons, and 500 hidden neurons in the first hidden layer performed 

best (Table 6). These models explained 40%, 47% and 48% of the variance in simulated 

PCL-estimated AGB with RMSEs of 19.90 Mg/ha, 19.72 Mg/ha and 20.29 Mg/ha for 

the daytime, nighttime and no noise scenarios respectively. Incremental increases in the 

number of neurons in the first hidden layer yielded R
2
 values ranging from 0.38 to 0.40, 

0.45 to 0.47, and 0.46 to 0.48 with the daytime, nighttime and no noise scenarios. In 

comparison, using the formula proposed by Guang-Bin (2003), a DNN with 98 neurons 

in the first layer and 20 hidden nodes in the 2nd layer yielded a R
2
 and RMSE of 0.40 

and 19.92 Mg/ha, 0.45 and 19.95 Mg/ha and 0.47 and 20.27 Mg/ha for the daytime, 

nighttime and no noise scenarios respectively. 

 

Table 6. Model performance with different number of neurons in the first hidden 

layer 
Number of 

neurons in 

1st hidden 

layer 

Daytime Scenario Nighttime Scenario No Noise Scenario 

R
2
 

RMSE 

(Mg/ha) 
R

2
 

RMSE 

(Mg/ha) 
R

2
 

RMSE 

(Mg/ha) 

20 0.40 19.95 0.45 19.97 0.46 20.60 

40 0.40 20.01 0.45 19.98 0.46 20.55 

60 0.40 19.98 0.46 19.92 0.47 20.49 

80 0.40 19.94 0.46 19.91 0.47 20.49 

100 0.40 19.94 0.45 19.99 0.47 20.44 

120 0.40 19.95 0.45 19.94 0.47 20.46 

140 0.40 20.00 0.46 19.89 0.47 20.44 

160 0.40 20.02 0.45 19.97 0.47 20.38 

180 0.39 20.08 0.46 19.84 0.47 20.43 
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Table 6 Continued 
Number of 

neurons in 

1st hidden 

layer 

Daytime Scenario Nighttime Scenario No Noise Scenario 

R
2
 

RMSE 

(Mg/ha) 
R

2
 

RMSE 

(Mg/ha) 
R

2
 

RMSE 

(Mg/ha) 

200 0.39 20.06 0.45 19.98 0.47 20.46 

300 0.40 19.90 0.46 19.88 0.47 20.36 

400 0.39 20.09 0.46 19.85 0.47 20.32 

500 0.39 20.05 0.45 20.08 0.48 20.29 

600 0.40 19.91 0.47 19.72 0.47 20.34 

700 0.39 20.13 0.46 19.87 0.47 20.37 

800 0.40 19.93 0.46 19.75 0.47 20.35 

900 0.40 19.98 0.46 19.84 0.47 20.36 

1000 0.38 20.27 0.45 20.00 0.48 20.30 

 

To better understand the applicability of DNNs using simulated PCL-estimated 

AGB and predictors consisting of Landsat spectral metrics, landcover and canopy cover, 

model performance from varying the number of hidden neurons in each additional 

hidden layer were assessed and compared. With the daytime scenario, a second hidden 

layer was added and neurons were increased in increments of 20 to a maximum of 300 

hidden neurons. The DNN consisting of 160 neurons in the second hidden layer 

performed best, in terms of R
2
 and RMSE and addition of a third hidden layer did not 

improve model performance (Figure 12). With the nighttime scenario, a second hidden 

layer with hidden neurons varied from 20 to 500 was investigated, leading to DNN 

structure consisting of 2 hidden layers with 600 in the first hidden layer and 400 in the 

second. The lowest reported RMSE corresponding to the DNN with a third hidden layer 

is shown in Figure 12. However, DNN with two hidden layers achieved the best results.  

The best performing model with the no noise scenario consisted of five densely 

connected layers; one input layer, 3 hidden layers with 500, 300 and 60 neurons in the 
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first, second and third hidden layer respectively, and 1 output layer. DNNs with four 

hidden layers did not result in better models (Figure 12). 

 

Figure 12. Neural network structures for predicting AGB with the daytime, 

nighttime and no noise scenarios 

 

Findings from tuning the learning rate for each DNN (Table 7) resulted in final 

models with the parameter set to 0.0001 for the daytime and nighttime scenarios and 

0.001 for the no noise scenarios. Substantial decreases in R
2
 were noted when the 

learning rate was increased to 0.01 and 0.1 indicating overall suitability of the 0.001 and 

0.0001 level with the data. For example, with the DNN model for the daytime scenario, 

the learning rate set to 0.0001 yielded the highest R
2
 and lowest RMSE of 0.42 and 

19.55 Mg/ha, while a learning rate of 0.1 resulted in R
2
 of 0.25 and RMSE of 22.32 
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Mg/ha. With the nighttime scenario, a change in the learning rate from 0.1 to 0.0001 

increased the R
2 

value from 0.34 to 0.49 leading to 0.0001 as the final learning rate used 

in the model for producing the AGB map. The model for the no noise scenario yielded 

R
2 

and RMSE of 0.50 and 19.82 Mg/ha when the learning rate was set to 0.001 or 

0.0001, compared to 0.40 and 21.66 Mg/ha when the rate was 0.1.  

Scatterplots with simulated PCL-estimated AGB vs DNN predicted AGB (Figure 

13) show the line of best fit adjacent to the 1:1 line. However, DNN models tended to 

underestimate AGB, where this trend was most pronounced with the daytime scenario 

and least prominent with the no noise scenario. Average AGB predictions from maps 

(Figures 14-16) produced with the final trained DNN models for the daytime, nighttime 

and no noise scenarios were 43.16 Mg/ha, 45.85 Mg/ha and 46.52 Mg/ha respectively. 

Overall, maps correspond with vegetation patterns in the study area with the southern 

portion of the site predominated by forests, primarily mature pines, and lower AGB 

values in northern portions, which includes young pine stands. Higher AGB values are 

evident in the map generated with the no noise scenario while lower AGB ranges are 

more prevalent with the map for the daytime scenario. Maximum predicted AGB density 

for 30 m cells was 78.88 Mg/ha for the daytime scenario, 85.73 Mg/ha with the 

nighttime scenario and 101.35 Mg/ha with the no noise scenario. With the training data 

average AGB were 51.21 Mg/ha, 52.24 Mg/ha and 52.09 Mg/ha for the daytime, 

nighttime and no noise scenarios and maximum values were 139.61 Mg/ha, 119.75 

Mg/ha and 150.64 Mg/ha. A comparison of DNN models with RF models (Narine et al. 

in press) produced with the same data (Table 8) highlighted comparable predictive 
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abilities.  Except for the no noise scenario, R
2 

values were identical for the two sets of 

models and RMSEs were in the same range.  

Table 7. DNN model performance for the daytime and nighttime and no noise 

scenarios, for different learning rates 

  

Daytime Scenario 

Model Structure:  

6-300-160-1 

Nighttime Scenario 

Model Structure:  

6-600-400-1 

No Noise Scenario 

Model Structure:  

6-500-300-60-1 

Learning 

Rate R
2
 RMSE R

2
 RMSE R

2
 RMSE 

0.1 0.25 22.32 0.34 22.01 0.40 21.66 

0.01 0.39 20.17 0.45 20.02 0.41 21.48 

0.001 0.42 19.57 0.48 19.42 0.50 19.82 

0.0001 0.42 19.55 0.49 19.35 0.50 19.82 
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Figure 13. Simulated PCL AGB estimated from linear regression vs DNN predicted 

AGB with test data for the daytime scenario; (b) Simulated PCL AGB estimated 

from linear regression vs DNN predicted AGB with test data for the nighttime 

scenario (c) Simulated PCL AGB estimated from linear regression vs DNN 

predicted AGB with test data for the no noise scenario. The dashed line in each 

graph is the 1:1 line 
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Figure 14. DNN predictions of AGB density at a 30 m spatial resolution for the 

daytime scenario 
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Figure 15.  DNN predictions of AGB density at a 30 m spatial resolution for the 

nighttime scenario 
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Figure 16.  DNN predictions of AGB density at a 30 m spatial resolution for the no 

noise scenario 
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Table 8. Comparison of RF predicted AGB with AGB predicted from DNN models 

under three scenarios; no noise, daytime and nighttime scenarios 

  RF Model  DNN Model 

Scenario R² RMSE R² RMSE 

Daytime 0.42 19.69 Mg/ha 0.42 19.55 Mg/ha 

Nighttime 0.49 19.30 Mg/ha 0.49 19.35 Mg/ha 

No Noise 0.51 19.72 Mg/ha 0.50 19.82 Mg/ha 

 

4.4. Discussion 

With ICESat-2 already in launch, data will soon be available for meeting the 

mission’s science objectives, one of which has a direct benefit to the ecosystem 

community (Markus et al. 2017).  The mission’s ATL08 product will provide canopy 

heights and canopy cover which will be used to produce global maps of these attributes 

at the end of the mission (Neuenschwander et al. 2017; Markus et al. 2017). The 

investigation of approaches for utilizing ICESat-2 data using simulated data could 

potentially offer a better understanding of how the data can be used for vegetation 

studies, provide insights about the expected accuracies of techniques examined, and 

potentially facilitate quick adoption using the actual data. The relationship between 

simulated PCL metrics from 100 m segments and reference airborne lidar-estimated 

AGB along ICESat-2 profiles over the study site in SHNF was modeled in a previous 

study (Narine et al. 2019) and the resulting prediction equations were applied to estimate 

AGB for daytime, nighttime and no noise scenarios. Using freely available data, 

including satellite data which offers global coverage, AGB estimates were up-scaled 

from 3% of 30 m pixels which comprise the area, to produce spatially explicit AGB 

coverage.  
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In this study, simulated PCL estimated AGB along 2 years of tracks over the 

study site were used in synergy with spectral metrics derived from Landsat imagery and 

NLCD products to develop regression-based models for application to the rest of the 

study site. Deep learning was implemented using feedforward neural networks 

consisting of multiple nonlinear hidden layers. A key task was to determine an 

appropriate number of hidden layers and hidden neurons or architecture of models 

predicting AGB with the data. The final model for the daytime scenario consisted of four 

densely connected layers; one input layer, two hidden layers and one output layer. With 

the nighttime scenario, the neural network consisted of two non-linear hidden layers and 

the neural network structure for the no noise scenario consisted of three hidden layers. 

All neural networks used fully connecting layers and at least 300 neurons in the first 

hidden layer of each model, resulting in architectures with hundreds of thousands of 

parameters or weights. Increasing the width of the neural networks led to some 

improvements in terms of RMSEs with negligible differences in training time and with 

added depth, model performance improved with consistently better results from the 

nighttime scenario than daytime scenario. One possible reason for R
2
 values being less 

than expected could be dissimilarities in the range of biomass represented in the test data 

and training data, as mentioned in a biomass mapping study with neural networks by 

Foody et al. (2001). Thus, additional training data representative of the range of AGB, 

including data in the test set, may improve model accuracies. It is also important to note 

that additional layers of representation to the final selected network structures did not 

improve model performance and findings demonstrate that the DNN models for all data 
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scenarios yielded results that were comparable to RF models. With more training data, 

the use of a deeper architecture could be beneficial and likely improve results (Liu 

2017).   

A comparison of different learning rates for selected model structures revealed 

apparent differences in reported R
2
 values and RMSEs. In one study, comparison of 

learning rates using a regression-based, deep auto-encoder model with two hidden layers 

for gene expression prediction yielded MSEs ranging from 0.289 to 0.292, with the best 

results attributed to the model with highest learning rate; 0.1 (Xie et al. 2017). Learning 

rates investigated were 0.1, 0.01, 0.001, 0.0001 and 0.00001 (Xie et al. 2017). 

Conversely, findings from this study emphasized the importance of the lowest learning 

rates investigated (0.001 and 0.0001) for predicting AGB in each data scenario and with 

highest RMSE and R
2
 values corresponding to DNNs when the learning rates were set to 

0.1.  

The use of RF has been successfully demonstrated in the literature for mapping 

AGB with data from ICESat-2’s predecessor (e.g. Chi et al. 2016), but with the ability to 

handle large, complex datasets, DL algorithms could be explored for generating a 

spatially explicit AGB product from an integration of multi-source data, including 

GEDI, ICESat-2, satellite optical imagery and radar data with other ancillary data. For 

instance, a combination of predicted AGB density from GEDI and ICESat-2 data could 

be combined with mapped variables derived from Landsat data, for generating a wall-to-

wall AGB map. With current and upcoming space-based vegetation missions like 

NASA-ISRO Synthetic Aperture Radar (NISAR) (Rosen et al. 2016) and the European 
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Space Agency P-band radar BIOMASS mission (Carreiras et al. 2017), the volume of 

data that can potentially provide rich insights about the world’s forests will grow 

considerably and DL models could play a larger role in predicting forest attributes. 

Given new data from satellite sensors and multiple, open-source DL frameworks (e.g. 

TensorFlow), DL architectures for predicting AGB can be explored more extensively. 

Future work could entail an examination and comparison of multiple DL techniques, like 

the SSAE model (Shao et al. 2017), autoregressive neural network (e.g. Nunez et al. 

2018), and recurrent neural network (e.g. Lee and Lee 2018), for producing a wall-to-

wall AGB product with ICESat-2 and other satellite remote sensing data. Finally, limited 

examples of DL models for estimating forest biophysical parameters in the literature 

suggest the need for further research to better understand or identify potential benefits 

from DL for forest mapping applications. 

 

4.5. Conclusions 

In this study, an approach for mapping AGB was developed by integrating 

simulated PCL-estimated AGB with Landsat imagery, NLCD canopy cover and land 

cover using DNNs. The effect of network structure and learning rate on model 

performance were evident with the latter having sizeable impacts on reported error 

metrics. While reported accuracies from DL models were comparable to RF models in 

this study, additional training data may likely improve results and deeper architectures 

could be investigated. Nevertheless, findings with simulated PCL-estimated data along 

ICESat-2 profiles, especially with the nighttime scenario (R
2
 = 0.49), highlight the 
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potential for generating a wall-to-wall AGB product with ICESat-2 by adopting a 

synergistic approach with Landsat optical imagery, canopy cover and land cover. With 

growing volumes of data from current space lidars and upcoming satellite missions and 

learning capacity of DL, DL algorithms should be explored in future research. In doing 

so, multiple techniques for modeling AGB and other forest structural parameters could 

be implemented and compared. 

 

4.6. References 

Baccini, A., Friedl, M.A., Woodcock, C.E., & Warbington, R. (2004). Forest biomass 

estimation over regional scales using multisource data. Geophysical Research Letters, 

31, 4. 

Baghdadi, N., le Maire, G., Fayad, I., Bailly, J.S., Nouvellon, Y., Lemos, C., Hakamada, 

R., & Ieee (2014). Estimation of Forest Height and Aboveground Biomass from ICESat-

2/GLAS Data in Eucaluptus Plantations in Brazil. 2014 Ieee International Geoscience 

and Remote Sensing Symposium (Igarss), 725-728. 

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in 

Machine Learning, 2(1): 1-55.  

Blair, J.B., & Hofton, M.A. (1999). Modeling laser altimeter return waveforms over 

complex vegetation using high-resolution elevation data. Geophysical Research Letters, 

26, 2509-2512 

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. 



 

118 

 

Carreiras, J.M.B., Shaun, Q.G., Toan, T.L., Minh, D.H.T., Saatchi, S.S., Carvalhais, N., 

Reichstein, M., & Scipal, K. (2017). Coverage of high biomass forests by the ESA 

BIOMASS mission under defense restrictions. Remote Sensing of Environment, 196, 

154-162. 

Chi, H., Sun, G.Q., Huang, J.L., Guo, Z.F., Ni, W.J., & Fu, A.M. (2015). National Forest 

Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in 

China. Remote Sensing, 7, 5534-5564. 

Chollet, F.o. (2018). Deep learning with Python. Shelter Island, NY: Manning 

Publications Co. 

Doukim, C.A., Dargham, J.A., & Chekima, A. (2010). Finding the number of hidden 

neurons for an MLP neural network using coarse to fine search technique. In, 10th 

International Conference on Information Science, Signal Processing and their 

Applications (ISSPA 2010) (pp. 606-609). 

Foody, G.M., Cutler, M.E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D.S., & Douglas, 

I. (2001). Mapping the biomass of Bornean tropical rain forest from remotely sensed 

data. Global Ecology and Biogeography, 10, 379-387. 

Garcia-Gutierrez, J., Gonzalez-Ferreiro, E., Mateos-Garcia, D., & Riquelme-Santos, J.C. 

(2016). A Preliminary Study of the Suitability of Deep Learning to Improve LiDAR-

Derived Biomass Estimation. Hybrid Artificial Intelligent Systems, 9648, 588-596. 

Garcia-Gutierrez, J., Martinez-Alvarez, F., Troncoso, A., & Riquelme, J.C. (2015). A 

comparison of machine learning regression techniques for LiDAR-derived estimation of 

forest variables. Neurocomputing, 167, 24-31. 



 

119 

 

Glenn, N.F., Neuenschwander, A., Vierling, L.A., Spaete, L., Li, A.H., Shinneman, D.J., 

Pilliod, D.S., Arkle, R.S., & McIlroy, S.K. (2016). Landsat 8 and ICESat-2: Performance 

and potential synergies for quantifying dryland ecosystem vegetation cover and biomass. 

Remote Sensing of Environment, 185, 233-242. 

Goetz, S., & Dubayah, R. (2011). Advances in remote sensing technology and 

implications for measuring and monitoring forest carbon stocks and change. Carbon 

Management, 2, 231-244. 

Chollet, F.o. (2018). Deep learning with Python. Shelter Island, NY: Manning 

Publications Co. 

Goodfellow, I. Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. 

http://www.deeplearningbook.org (accessed: 02.05.19). 

Guang-Bin, H. (2003). Learning capability and storage capacity of two-hidden-layer 

feedforward networks. IEEE Transactions on Neural Networks, 14, 274-281. 

Gwenzi, D., Lefsky, M.A., Suchdeo, V.P., & Harding, D.J. (2016). Prospects of the 

ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on 

airborne simulation data. Isprs Journal of Photogrammetry and Remote Sensing, 118, 

68-82. 

Hall, F.G., Bergen, K., Blair, J.B., Dubayah, R., Houghton, R., Hurtt, G., Kellndorfer, J., 

Lefsky, M., Ranson, J., Saatchi, S., Shugart, H.H., & Wickland, D. (2011). 

Characterizing 3D vegetation structure from space: Mission requirements. Remote 

Sensing of Environment, 115, 2753-2775. 



 

120 

 

Harding, D.J., & Carabajal, C.C. (2005). ICESat waveform measurements of within-

footprint topographic relief and vegetation vertical structure. Geophysical Research 

Letters, 32, 4 

Hatcher, W.G., & Yu, W. (2018). A Survey of Deep Learning: Platforms, Applications 

and Emerging Research Trends. Ieee Access, 6, 24411-24432. 

Homer, C., Dewitz, J., Yang, L.M., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, 

N., Wickham, J., & Megown, K. (2015). Completion of the 2011 National Land Cover 

Database for the Conterminous United States - Representing a Decade of Land Cover 

Change Information. Photogrammetric Engineering and Remote Sensing, 81, 345-354. 

Hu, T., Su, Y., Xue, B., Liu, J., Zhao, X., Fang, J., & Guo, Q. (2016). Mapping Global 

Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest 

Inventory Data. Remote Sensing, 8, 565. 

Lee, S., & Lee, D. (2018). Improved Prediction of Harmful Algal Blooms in Four Major 

South Korea's Rivers Using Deep Learning Models. International Journal of 

Environmental Research and Public Health, 15, 15. 

Lefsky, M.A. (2010). A global forest canopy height map from the Moderate Resolution 

Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophysical 

Research Letters, 37, 5. 

Lefsky, M.A., Keller, M., Pang, Y., de Camargo, P.B., & Hunter, M.O. (2007). Revised 

method for forest canopy height estimation from Geoscience Laser Altimeter System 

waveforms. Journal of Applied Remote Sensing, 1, 18. 



 

121 

 

Liu, K., Wang, J., Zeng, W., & Song, J. (2017). Comparison and Evaluation of Three 

Methods for Estimating Forest above Ground Biomass Using TM and GLAS Data. 

Remote Sensing, 9, 341. 

Lu, D.S., Chen, Q., Wang, G.X., Liu, L.J., Li, G.Y., & Moran, E. (2016). A survey of 

remote sensing-based aboveground biomass estimation methods in forest ecosystems. 

International Journal of Digital Earth, 9, 63-105. 

Lv, J.J., Zhang, B., & Li, X.Q. (2019). Research on Object Detection Algorithm Based 

on PVANet. Advances in Computer Communication and Computational Sciences, Vol 1, 

759, 141-151. 

Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., 

Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., 

Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., Popescu, S., Shum, 

C.K., Schutz, B.E., Smith, B., Yang, Y., & Zwally, J. (2017). The Ice, Cloud, and land 

Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. 

Remote Sensing of Environment, 190, 260-273. 

Marselis, S., Armston, J., & Dubayah, R. (2016). Summary of the Second GEDI Science 

Team Meeting, in: National Aeronautics and Space Administration, The Earth Observer, 

November - December 2016, Volume 28, Issue 6, pp: 31-36. 

Martino, A. (2010). ATLAS Performance Spreadsheet. 

http://icesat.gsfc.nasa.gov/icesat2/data/sigma/sigma_data.php (accessed: 06.04.18). 



 

122 

 

Montesano, P.M., Rosette, J., Sun, G., North, P., Nelson, R.F., Dubayah, R.O., Ranson, 

K.J., & Kharuk, V. (2015). The uncertainty of biomass estimates from modeled ICESat-

2 returns across a boreal forest gradient. Remote Sensing of Environment, 158, 95-109. 

Moussavi, M.S., Abdalati, W., Scambos, T., & Neuenschwander, A. (2014). 

Applicability of an automatic surface detection approach to micropulse photon-counting 

lidar altimetry data: implications for canopy height retrieval from future ICESat-2 data. 

International Journal of Remote Sensing, 35, 5263-5279. 

MRLC (2017). Multi-resolution land characteristics consortium (MRLC): national land 

cover database. http://www.mrlc.gov/ (accessed: 02.09.17). 

Narine, L.L., Popescu, S., Neuenschwander, A., Zhou, T., Srinivasan, S., & Harbeck, K. 

(2019). Estimating aboveground biomass and forest canopy cover with simulated 

ICESat-2 data. Remote Sensing of Environment, 224, 1-11. 

Narine, L.L., Popescu S., Zhou T., Srinivasan S., & Harbeck K. (in press). Mapping 

Forest Aboveground Biomass with a Simulated ICESat-2 Vegetation Canopy Product 

and Landsat Data. Annals of Forest Research. 

National Aeronautics and Space Administration, 2017. ICESat & ICESat-2. 

http://icesat.gsfc.nasa.gov/ (accessed: 06.04.18). 

Nelson, R., Margolis, H., Montesano, P., Sun, G., Cook, B., Corp, L., Andersen, H.-E., 

deJong, B., Pellat, F.P., Fickel, T., Kauffman, J., & Prisley, S. (2017). Lidar-based 

estimates of aboveground biomass in the continental US and Mexico using ground, 

airborne, and satellite observations. Remote Sensing of Environment, 188, 127-140. 



 

123 

 

Neuenschwander, A., & Pitts, K. (2019). The ATL08 land and vegetation product for the 

ICESat-2 Mission. Remote Sensing of Environment, 221, 247-259. 

Neuenschwander, A., Popescu, S., Nelson, R., Harding, D., Pitts, K., Pederson, D., & 

Sheridan, R. (2017). ICE, CLOUD, and Land Elevation Satellite (ICESat-2) Algorithm 

Theoretical Basis Document (ATBD) for Land - Vegetation Along-track products 

(ATL08). In  (p. 108). 

Neuenschwander, A.L., & Magruder, L.A. (2016). The Potential Impact of Vertical 

Sampling Uncertainty on ICESat-2/ATLAS Terrain and Canopy Height Retrievals for 

Multiple Ecosystems. Remote Sensing, 8, 16. 

Nunez, R.A.C., de la Pena, M., Irigollen, A.F., & Rodriguez, M.R. (2018). Deep learning 

models for the prediction of small-scale fisheries catches: finfish fishery in the region of 

"Bahia Magadalena-Almejas". Ices Journal of Marine Science, 75, 2088-2096. 

Popescu, S.C. (2007). Estimating biomass of individual pine trees using airborne lidar. 

Biomass & Bioenergy, 31, 646-655. 

Popescu, S.C., Zhao, K., Neuenschwander, A., & Lin, C. (2011). Satellite lidar vs. small 

footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and 

forest structure metrics at footprint level. Remote Sensing of Environment, 115, 2786-

2797. 

Popescu, S.C., Zhou, T., Nelson, R., Neuenschwande, A., Sheridan, R., Narine, L., & 

Walsh, K.M. (2018). Photon counting LiDAR: An adaptive ground and canopy height 

retrieval algorithm for ICESat-2 data. Remote Sensing of Environment, 208, 154-170. 



 

124 

 

Rosen, P., Hensley, S., Shaffer, S., Edelstein, W., Kim, Y., Kumar, R., Misra, T., Bhan, 

R., Satish, R., Sagi, R., & Ieee (2016). AN UPDATE ON THE NASA-ISRO DUAL-

FREQUENCY DBF SAR (NISAR) MISSION. 2016 Ieee International Geoscience and 

Remote Sensing Symposium (Igarss), 2106-2108. 

Shafaey, M.A., Salem, M.A.M., Ebied, H.M., Al-Berry, M.N., & Tolba, M.F. (2019). 

Deep Learning for Satellite Image Classification. Proceedings of the International 

Conference on Advanced Intelligent Systems and Informatics 2018, 845, 383-391. 

Shao, Z.F., Zhang, L.J., & Wang, L. (2017). Stacked Sparse Autoencoder Modeling 

Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map 

Forest Above-Ground Biomass. Ieee Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 10, 5569-5582. 

Simard, M., Pinto, N., Fisher, J.B., & Baccini, A. (2011). Mapping forest canopy height 

globally with spaceborne lidar. Journal of Geophysical Research-Biogeosciences, 116, 

12. 

Stathakis, D. (2009). How many hidden layers and nodes? AU - Stathakis, D. 

International Journal of Remote Sensing, 30, 2133-2147. 

Stysley, P.R., Coyle, D.B., Clarke, G.B., Frese, E., Blalock, G., Morey, P., Kay, R.B., 

Poulios, D., & Hersh, M. (2016). Laser Production for NASA's Global Ecosystem 

Dynamics Investigation (GEDI) Lidar. In, Conference on Laser Radar Technology and 

Applications XXI. Baltimore, MD: Spie-Int Soc Optical Engineering. 

Sun, X. (2012). Space-Based Lidar Systems. In, Conference on Lasers and Electro-

Optics 2012 (p. JW3C.5). San Jose, California: Optical Society of America. 



 

125 

 

Tian, X., Li, Z., Su, Z., Chen, E., van der Tol, C., Li, X., Guo, Y., Li, L., & Ling, F. 

(2014). Estimating montane forest above-ground biomass in the upper reaches of the 

Heihe River Basin using Landsat-TM data. International Journal of Remote Sensing, 35, 

7339-7362. 

Trier, O.D., Salberg, A.B., Kermit, M., Rudjord, O., Gobakken, T., Naesset, E., & 

Aarsten, D. (2018). Tree species classification in Norway from airborne hyperspectral 

and airborne laser scanning data. European Journal of Remote Sensing, 51, 336-351. 

Wang, L., Liu, J.P., Xu, S.H., Dong, J.J., & Yang, Y. (2018). Forest Above Ground 

Biomass Estimation from Remotely Sensed Imagery in the Mount Tai Area Using the 

RBF ANN Algorithm. Intelligent Automation and Soft Computing, 24, 391-398. 

Xie, R., Wen, J., Quitadamo, A., Cheng, J.L., & Shi, X.H. (2017). A deep auto-encoder 

model for gene expression prediction. Bmc Genomics, 18. 

Zald, H.S.J., Wulder, M.A., White, J.C., Hilker, T., Hermosilla, T., Hobart, G.W., & 

Coops, N.C. (2016). Integrating Landsat pixel composites and change metrics with lidar 

plots to predictively map forest structure and aboveground biomass in Saskatchewan, 

Canada. Remote Sensing of Environment, 176, 188-201. 

Zhu, X.X., Tuia, D., Mou, L., Xia, G., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep 

Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE 

Geoscience and Remote Sensing Magazine, 5, 8-36. 

 

 



 

126 

 

5. CONCLUSIONS 

 

The ICESat-2 mission offers an opportunity to contribute to the up-to-date 

characterization of vegetation structure, including spatially explicit assessments of AGB 

density which can be used to support sustainable forest management and reduce 

uncertainty in quantifying terrestrial carbon. In this study, the utilization of simulated 

ICESat-2 PCL data along planned track locations over SHNF for modeling and mapping 

AGB and estimating canopy cover was demonstrated. In addition to applying the 

expected photon detection rate over temperate forests, the impact of the atmosphere and 

solar background noise detected by the ATLAS instrument was considered in the PCL 

simulations with the analysis of three data scenarios representative of different noise 

levels; daytime, nighttime and no noise. To maintain consistency with the data format 

provided by ICESat-2’s ATL08 land and vegetation product, the scenarios were 

processed to report height, canopy cover and canopy density metrics for 100 m along-

track segments. Results from multiple regression models highlighted the predictive 

ability of the simulated PCL-derived metrics to characterize forest vegetation, with R
2
 

values of ranging from 0.56 to 0.83 with the daytime and nighttime scenarios. In 

particular, the ability of the nighttime scenario to predict AGB was comparable to 

simulated data without the addition of noise, yielding a R
2
 0.79 and RMSE of 19.23 

Mg/ha. 

Using predicted AGB and mapped predictors consisting of Landsat reflectance 

data, landcover and canopy cover, AGB maps and AGB uncertainty maps were 
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produced at 30 m spatial resolution with RF. The integration of Landsat data and derived 

products for AGB model and map production highlighted canopy cover as the most 

important predictor of AGB in every scenario and indicated similarities in the predictive 

capabilities of RF models for no noise and nighttime scenarios, which outperformed the 

daytime scenario. RF regression tree models explained 42%, 49% and 51% of the 

variance with test data for the daytime, nighttime and no noise scenarios with RMSE 

values of 19.69 Mg/ha, 19.30 Mg/ha and 19.72 Mg/ha. Uncertainty in the resulting 

maps, estimated as the variability of predictions from 1000 independent trees used to 

estimate pixel AGB, emphasized areas with higher values in the daytime scenario than 

the corresponding nighttime scenario.  

The investigation of DNNs for mapping AGB highlighted the potential of this 

approach for mapping AGB by integrating simulated PCL-estimated AGB with Landsat 

imagery, NLCD canopy cover and land cover. Findings revealed the effect of neural 

network structure and learning rate on model performance with the latter having sizeable 

impacts on reported error metrics. Overall, wider architectures (at least 300 neurons) 

with two to three hidden layers yielded results comparable to those achieved with RF. 

Models achieved R
2
 values and RMSEs of 0.42 and 19.55 Mg/ha, 0.49 and 19.30 Mg/ha 

and 0.50 and 19.72 Mg/ha for the daytime, nighttime and no noise scenarios 

respectively. With additional training data, results may improve and deeper architectures 

could be investigated. Nevertheless, findings with simulated PCL-estimated AGB, 

especially with the nighttime scenario, highlight the potential for generating a wall-to-
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wall AGB product with ICESat-2 by adopting a synergistic approach with Landsat data 

and derived products, using DNNs.  

Given the coverage of ICESat-2 profiles over vegetation and free of charge and 

open access data used in this study, upscaling approaches could be implemented at larger 

spatial scales, such as regional and continental extents.  In doing so, ancillary data such 

as climatic and topographic variables may be examined for improving AGB predictions. 

Similar performance of RF and DNN models also suggest that multiple techniques or 

approaches should be explored for generating an AGB product with ICESat-2. 

Additionally, with growing volumes of data from current space lidars, such as ICESat-2 

and GEDI, as well as upcoming satellite missions (e.g. BIOMASS mission) and the 

learning capacity of DL, DL algorithms could be further explored in future research. 

 

 

 

 

 

 

 

 

 

 

 


