67 research outputs found

    Renormalized Perturbation Approach for Examination of Itinerant-Localized Duality Model for Strongly Correlated Electron Systems

    Full text link
    We present a microscopic examination for the itinerant-localized duality model which has been proposed to understand anomalous properties of strongly correlated systems like the heavy fermions by Kuramoto and Miyake, and also useful to describe the anomalous properties of the high-Tc cupurates. We show that the thermodynamic potential of the strongly interacting Hubbard model can be rearranged in the form of duality model on the basis of renormalized perturbation expansion of the Luttinger-Ward functional if the one-particle spectral weight exhibits triple peak structure. We also examine the incoherent degrees of freedom described as a ``localized spin'' and show on the basis of the pertubation expansion that there exists commensurate superexchange-type interaction among the ``localized spins''.Comment: 17 pages, LaTeX, 14 figure PS file, Submitted to J. Phys. Soc. Jp

    One-Particle Excitation of the Two-Dimensional Hubbard Model

    Full text link
    The real part of the self-energy of interacting two-dimensional electrons has been calculated in the t-matrix approximation. It is shown that the forward scattering results in an anomalous term leading to the vanishing renormalization factor of the one-particle Green function, which is a non-perturbative effect of the interaction U. The present result is a microscopic demonstration of the claim by Anderson based on the conventional many-body theory. The effect of the damping of the interacting electrons, which has been ignored in reaching above conclusion, has been briefly discussed.Comment: 7 pages, LaTeX, 1 figure, uses jpsj.sty, to be published in J. Phys. Soc. Jpn. 66 No. 3 (1997

    Proof of concept for robot-aided upper limb rehabilitation using disturbance observers

    Get PDF
    This paper presents a wearable upper body exoskeleton system with a model-based compensation control framework to support robot-aided shoulder-elbow rehabilitation and power assistance tasks. To eliminate the need for EMG and force sensors, we exploit off-the-shelf compensation techniques developed for robot manipulators. Thus, target rehabilitation tasks are addressed by using only encoder readings. A proof-of-concept evaluation was conducted with live able-bodied participants. The patient-active rehabilitation task was realized via observer-based user torque estimation, in which resistive forces were adjusted using virtual impedance. In the patient-passive rehabilitation task, the proposed controller enabled precise joint tracking with a maximum positioning error of 0.25°. In the power assistance task, the users' muscular activities were reduced up to 85% while exercising with a 5 kg dumbbell. Therefore, the exoskeleton system was regarded as being useful for the target tasks, indicating that it has a potential to promote robot-aided therapy protocols.Ministry of Education, Culture, Sports, Science and Technology, Japanpost-prin

    Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System

    Full text link
    Rough surface effect on the Meissner diamagnetic current in the normal layer of proximity contact N-S bi-layer is investigated in the clean limit. The diamagnetic current and the screening length are calculated by use of quasi-classical Green's function. We show that the surface roughness has a sizable effect, even when a normal layer width is large compared with the coherence length ξ=vF/πTc\xi =v_{\rm F}/\pi T_{\rm c}. The effect is as large as that of the impurity scattering and also as that of the finite reflection at the N-S interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-

    Magnetic Anisotropy in Quantum Hall Ferromagnets

    Full text link
    We show that the sign of magnetic anisotropy energy in quantum Hall ferromagnets is determined by a competition between electrostatic and exchange energies. Easy-axis ferromagnets tend to occur when Landau levels whose states have similar spatial profiles cross. We report measurements of integer QHE evolution with magnetic-field tilt. Reentrant behavior observed for the ν=4\nu = 4 QHE at high tilt angles is attributed to easy-axis anisotropy. This interpretation is supported by a detailed calculation of the magnetic anisotropy energy.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Let

    Overscreening Diamagnetism in Cylindrical Superconductor-Normal Metal-Heterostructures

    Full text link
    We study the linear diamagnetic response of a superconducting cylinder coated by a normal-metal layer due to the proximity effect using the clean limit quasiclassical Eilenberger equations. We compare the results for the susceptibility with those for a planar geometry. Interestingly, for RdR\sim d the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at the interface to the superconductor it can be less than (-1/2) of the applied field. Even for RdR\gg d, the diamagnetism can be increased as compared to the planar case, viz. the magnetic susceptibility 4πχ4\pi\chi becomes smaller than -3/4. This behaviour can be explained by an intriguing spatial oscillation of the magnetic field in the normal layer

    Spontaneous coherence and the quantum Hall Effect in triple-layer electron systems

    Full text link
    We investigate spontaneous interlayer phase coherence and the occurrence of the quantum Hall effect in triple-layer electron systems. Our work is based on a simple tight-binding model that greatly facilitates calculations and whose accuracy is verified by comparison with recent experiments. By calculating the ground state in an unrestricted Hartree-Fock approximation and the collective-mode spectrum in a time-dependent Hartree-Fock approximation, we construct a phase diagram delimiting regions in the parameter space of the model where the integer quantum Hall effect occurs in the absence of interlayer tunneling.Comment: To appear in Phys. Rev. B, 20 pages, 5 PostScript figures uuencoded with TeX fil

    Spontaneous Inter-layer Coherence in Double-Layer Quantum-Hall Systems I: Charged Vortices and Kosterlitz-Thouless Phase Transitions

    Full text link
    At strong magnetic fields double-layer two-dimensional-electron-gas systems can form an unusual broken symmetry state with spontaneous inter-layer phase coherence. In this paper we explore the rich variety of quantum and finite-temperature phase transitions associated with this broken symmetry. We describe the system using a pseudospin language in which the layer degree-of-freedom is mapped to a fictional spin 1/2 degree-of-freedom. With this mapping the spontaneous symmetry breaking is equivalent to that of a spin 1/2 easy-plane ferromagnet. In this language spin-textures can carry a charge. In particular, vortices carry e/2 electrical charge and vortex-antivortex pairs can be neutral or carry charge e. We derive an effective low-energy action and use it to discuss the charged and collective neutral excitations of the system. We have obtained the parameters of the Landau-Ginzburg functional from first-principles estimates and from finite-size exact diagonalization studies. We use these results to estimate the dependence of the critical temperature for the Kosterlitz-Thouless phase transition on layer separation.Comment: 56 pages, 19 figures available upon request at [email protected]. RevTex 3.0. IUCM94-00

    A Metastatic Jejunal Tumor from Squamous Cell Carcinoma of the Lung Found in an Intestinal Perforation

    Get PDF
    An 85-year-old male with advanced squamous cell carcinoma of the lung, who was diagnosed about 10 years prior to his current presentation, suddenly complained of abdominal pain and underwent an abdominal computed tomography scan, which revealed free air and massive ascites. He was admitted to our hospital for acute peritonitis and emergency surgery was performed. During the surgical procedure, a perforation of the jejunum was diagnosed and repaired. He was diagnosed to have a metastatic tumor originating from a squamous cell carcinoma of the lung. He improved and was transferred to the former hospital on the 27th postoperative day. Jejunal metastasis from squamous cell carcinoma of the lung is rare, and the prognosis of peritonitis due to a perforated intestinal metastasis from lung cancer is poor. There have been 10 reports of jejunal metastasis of squamous cell carcinoma of the lung reported in Japan between 2000 and 2011. Therefore, when patients with advanced lung cancer present with acute abdomen, it is necessary to keep in mind the possibility of a gastrointestinal metastatic tumor

    Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -

    Full text link
    Superconductivity is a phenomenon where the macroscopic quantum coherence appears due to the pairing of electrons. This offers a fascinating arena to study the physics of broken gauge symmetry. However, the important symmetries in superconductors are not only the gauge invariance. Especially, the symmetry properties of the pairing, i.e., the parity and spin-singlet/spin-triplet, determine the physical properties of the superconducting state. Recently it has been recognized that there is the important third symmetry of the pair amplitude, i.e., even or odd parity with respect to the frequency. The conventional uniform superconducting states correspond to the even-frequency pairing, but the recent finding is that the odd-frequency pair amplitude arises in the spatially non-uniform situation quite ubiquitously. Especially, this is the case in the Andreev bound state (ABS) appearing at the surface/interface of the sample. The other important recent development is on the nontrivial topological aspects of superconductors. As the band insulators are classified by topological indices into (i) conventional insulator, (ii) quantum Hall insulator, and (iii) topological insulator, also are the gapped superconductors. The influence of the nontrivial topology of the bulk states appears as the edge or surface of the sample. In the superconductors, this leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the superconductors are the place where the symmetry and topology meet each other which offer the stage of rich physics. In this review, we discuss the physics of ABS from the viewpoint of the odd-frequency pairing, the topological bulk-edge correspondence, and the interplay of these two issues. It is described how the symmetry of the pairing and topological indices determines the absence/presence of the ZEABS, its energy dispersion, and properties as the Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde
    corecore