28 research outputs found

    Emerging Thin Film Solar Panels

    Get PDF
    Utilizing of photovoltaics (PVs) has been rapidly developing over the past two decades due to its potential for transition from fossil fuels to renewable energy based economies. However, PVs as fuel less energy sources will be sustainable if some issues such as raw materials abundance, production cost, and environmental impacts carefully addressed in their value chains. Among PV technologies, thin film solar panels have been illustrated the potential to reach the sustainability. In this chapter we review some studies about environmental impacts of thin film PVs through life cycle assessment (LCA) and some environmental fate modeling. For the PV technologies, LCA studies need to be conducted to address environmental and energy impacts and encourage the development of PV technologies in a better sustainable way. Three methods of impact assessment in LCA are reviewed and compared, namely, Energy Payback Time (EPBT), Cumulative Energy Demand (CED), and Greenhouse Gases (GHG) emission rate, owing to data and information published in the literature. Generally, most results show promising potential of emerging thin film PVs, especially perovskite solar cells, to reach the best sustainable solution among PV technologies in near future

    Energetic disorder in perovskite/polymer solar cells and its relationship with the interfacial carrier losses

    Get PDF
    Previous reports have observed a direct relationship between the polymer poly(3-hexylthiophene) molecular weight (MW) and the perovskite solar cell (PSC) efficiency. Herein, we analyse how the differences in MW and the differences in energetic disorder influence the interfacial carrier losses in the PSCs under operation conditions and explain the observed differences

    High-Efficiency Perovskite Solar Cell Based on Poly(3-Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer

    Get PDF
    Here, we investigated the effect of the molecular weight (MW) of poly 3-hexylthiophene (P3HT) hole-transport material on the performance of perovskite solar cells (PSCs). We found that by increasing the MW the photovoltaic performances of the cells are enhanced leading to an improvement of the overall efficiency. P3HT-based PSCs with a MW of 124 kDa can achieve an overall average efficiency of 16.2 %, double with respect to the ones with a MW of 44 kDa. Opposite to spiro-OMeTAD-based PSCs, the photovoltaic parameters of the P3HT-based devices are enhanced by increasing the mesoporous TiO2 layer thickness from 250 to 500 nm. Moreover, for a titania scaffold layer thickness of 500 nm, the efficiency of P3HT-based PSCs with high MW is larger than the spiro-OMeTAD based PSCs with the same scaffold layer thickness. Recombination reactions of the devices were also investigated by voltage decay and electrochemical impedance spectroscopy. We found that the relationship between P3HT MW and cell performance is related to the reduction of charge recombination and to the increase of the P3HT light absorption by increasing the MW

    Polymer/Inorganic Hole Transport Layer for Low-Temperature-Processed Perovskite Solar Cells

    Get PDF
    In the search for improvements in perovskite solar cells (PSCs), several different aspects are currently being addressed, including an increase in the stability and a reduction in the hysteresis. Both are mainly achieved by improving the cell structure, employing new materials or novel cell arrangements. We introduce a hysteresis-free low-temperature planar PSC, composed of a poly(3-hexylthiophene) (P3HT)/CuSCN bilayer as a hole transport layer (HTL) and a mixed cation perovskite absorber. Proper adjustment of the precursor concentration and thickness of the HTL led to a homogeneous and dense HTL on the perovskite layer. This strategy not only eliminated the hysteresis of the photocurrent, but also permitted power conversion efficiencies exceeding 15.3%. The P3HT/CuSCN bilayer strategy markedly improved the life span and stability of the non-encapsulated PSCs under atmospheric conditions and accelerated thermal stress. The device retained more than 80% of its initial efficiency after 100 h (60% after 500 h) of continuous thermal stress under ambient conditions. The performance and durability of the PSCs employing a polymer/inorganic bilayer as the HTL are improved mainly due to restraining perovskite ions, metals, and halides migration, emphasizing the pivotal role that can be played by the interface in the perovskite-additive hole transport materials (HTM) stack

    The Molecular Weight Dependence of Thermoelectric Properties of Poly (3-Hexylthiophene)

    Get PDF
    Organic materials have been found to be promising candidates for low-temperature thermoelectric applications. In particular, poly (3-hexylthiophene) (P3HT) has been attracting great interest due to its desirable intrinsic properties, such as excellent solution processability, chemical and thermal stability, and high field-effect mobility. However, its poor electrical conductivity has limited its application as a thermoelectric material. It is therefore important to improve the electrical conductivity of P3HT layers. In this work, we studied how molecular weight (MW) influences the thermoelectric properties of P3HT films. The films were doped with lithium bis(trifluoromethane sulfonyl) imide salt (LiTFSI) and 4-tert butylpyridine (TBP). Various P3HT layers with different MWs ranging from 21 to 94 kDa were investigated. UV–Vis spectroscopy and atomic force microscopy (AFM) analysis were performed to investigate the morphology and structure features of thin films with different MWs. The electrical conductivity initially increased when the MW increased and then decreased at the highest MW, whereas the Seebeck coefficient had a trend of reducing as the MW grew. The maximum thermoelectric power factor (1.87 μW/mK2) was obtained for MW of 77 kDa at 333 K. At this temperature, the electrical conductivity and Seebeck coefficient of this MW were 65.5 S/m and 169 μV/K, respectively

    Crystal engineering approach for fabrication of inverted perovskite solar cell in ambient conditions

    Get PDF
    In this paper, we demonstrate the high potentialities of pristine single-cation and mixed cation/anion perovskite solar cells (PSC) fabricated by sequential method deposition in p-i-n planar architecture (ITO/NiOX/Perovskite/PCBM/BCP/Ag) in ambient conditions. We applied the crystal engineering approach for perovskite deposition to control the quality and crystallinity of the light-harvesting film. The formation of a full converted and uniform perovskite absorber layer from poriferous pre-film on a planar hole transporting layer (HTL) is one of the crucial factors for the fabrication of high-performance PSCs. We show that the in-air sequential deposited MAPbI3-based PSCs on planar nickel oxide (NiOX) permitted to obtain a Power Conversion Efficiency (PCE) exceeding 14% while the (FA,MA,Cs)Pb(I,Br)3-based PSC achieved 15.6%. In this paper we also compared the influence of transporting layers on the cell performance by testing material depositions quantity and thickness (for hole transporting layer), and conditions of deposition processes (for electron transporting layer). Moreover, we optimized second step of perovskite deposition by varying the dipping time of substrates into the MA(I,Br) solution. We have shown that the layer by layer deposition of the NiOx is the key point to improve the efficiency for inverted perovskite solar cell out of glove-box using sequential deposition method, increasing the relative efficiency of +26% with respect to reference cells

    Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layer

    Get PDF
    Operational stability of perovskite solar cells (PSCs) is rapidly becoming one of the pressing bottlenecks for their upscaling and integration of such promising photovoltaic technology. Instability of the hole transport layer (HTL) has been considered as one of the potential origins of short life-time of the PSCs. In this work, by varying the molecular weight (MW) of doped poly(triarylamine)(PTAA) HTL, we improved by one order of magnitude the charge mobility inside the HTL and the charge transfer at the perovskite/HTL interface. We demonstrate that this occurs via the enhancement of polaron delocalization on the polymeric chains through the combined effect of doping strategy and MW tuning. By using high MW PTAA doped combining three different dopant, we demonstrate stable PSCs with typical power conversion efficiencies above 20%, retain more than 90% of the initial efficiency after 1080 h thermal stress at 85 °C and 87% of initial efficiency after 160 h exposure against 1 sun light soaking. By using this doping-MW strategy, we realized perovskite solar modules with an efficiency of 17% on an active area of 43 cm2, keeping above 90% of the initial efficiency after 800 h thermal stress at 85 °C. These results, obtained in ambient conditions, pave the way toward the industrialization of PSC-based photovoltaic technology.</p

    Electrocatalytic method and apparatus for the simultaneous conversion of methane and co2 to methanol through an electrochemical reactor operating at ordinary temperatures and pressures, including ambient ones

    No full text
    Electrocatalytic apparatus for the simultaneous conversion of methane and CO2 into methanol via an elctrochemical reactor operating at ambient temperature and pressure, said electrochemical reactor simultaneously converts CO2 to methanol by surficial catalytic reaction on the cathode, and methane to methanol by surficial catalytic reaction on the anode. The electrochemical reactor futher works with an electrolyte consisting of electrolytic complexes of water-soluable transition metals and small molecules as co-catalyst of the electrocatalytic reactions and facilitator of ionic transfer and solubility of CO2 and CH4 molecules in the electrolyte. The electrochemical reactor is further equipped with zero-gap membrane electrocatalytic electrode assemlics, the cathode and anode comprising two electrocatalytic mesoporous surfaces and being tubular and coaxial, delineating two regions, which are separated one from the other by an ion exchange membrane (27). The tubular electrodes pack vertically together, the external gaps being filled by an insulating material. The packed electrodes are electronically connected to the power source in a parallel electrical circuit

    Photovoltaics

    Get PDF
    The conversion of solar energy into electricity via the photovoltaic (PV) effect has been rapidly developing in the last decades due to its potential for transition from fossil fuels to renewable energy based economies. In particular, the advances in PV technology and on the economy of scale permitted to reduce the cost of the energy produced with solar cells down to the energy cost of conventional fossil fuel. Thus, PV will play an important role to address the biggest challenges of our planet including global warming, climate change and air pollution. In this paper, we will introduce the photovoltaic technology recalling the working principle of the photovoltaic conversion and describing the different PV available on the market and under development. In the last section, we will focus more on the emerging technology of the halide perovskite, which is the research subject of the authors
    corecore