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Abstract: In the search for improvements in perovskite solar cells (PSCs), several different aspects are
currently being addressed, including an increase in the stability and a reduction in the hysteresis.
Both are mainly achieved by improving the cell structure, employing new materials or novel
cell arrangements. We introduce a hysteresis-free low-temperature planar PSC, composed of
a poly(3-hexylthiophene) (P3HT)/CuSCN bilayer as a hole transport layer (HTL) and a mixed
cation perovskite absorber. Proper adjustment of the precursor concentration and thickness of
the HTL led to a homogeneous and dense HTL on the perovskite layer. This strategy not only
eliminated the hysteresis of the photocurrent, but also permitted power conversion efficiencies
exceeding 15.3%. The P3HT/CuSCN bilayer strategy markedly improved the life span and stability of
the non-encapsulated PSCs under atmospheric conditions and accelerated thermal stress. The device
retained more than 80% of its initial efficiency after 100 h (60% after 500 h) of continuous thermal stress
under ambient conditions. The performance and durability of the PSCs employing a polymer/inorganic
bilayer as the HTL are improved mainly due to restraining perovskite ions, metals, and halides
migration, emphasizing the pivotal role that can be played by the interface in the perovskite-additive
hole transport materials (HTM) stack.

Keywords: interface; CuSCN; bilayer; poly(3-hexylthiophene); stability

1. Introduction

Halide perovskite solar cells (PSCs) have become one of the most investigated research topics
in the renewable and sustainable energy community, owing to their effectiveness and high-power
conversion efficiency (PCE) [1], recently reaching more than 25% [2].

The halide perovskite used for photovoltaics has a typical AMX3 crystal structure, where A
is a monovalent cation, such as Cs+, Rb+, CH3NH3

+, NH2CH = NH2
+, CH3CH2NH3

+; M = Pb2
+,

Sn2
+; and X is a halide, such as Cl–, Br– or I– [3]. At the same time, employing a mixed-cation and

mixed-halide perovskite composition can dramatically improve the performance and stability of
PSCs [4,5].

In a typical PSC, the perovskite layer is deposited between a metal oxide electron transport
layer (ETL), with either a mesoporous or planar structure, and a hole-transport layer (HTL). Several hole
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transport materials (HTMs) have been considered so far, providing different final efficiencies,
such as: (i) 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD)
with a PCE of 22% [6]; (ii), poly(triarylamine) (PTAA) with a PCE of 20% [7]; (iii) poly(3,4-
ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) with a PCE of 15% [8]; and iv) P3HT with
PCE reaching 19.25% [9].

There are, however, several limitations in using these kinds of materials, such as excessive price,
inefficient electron-blocking capability, and low chemical stability [10]. In this respect, inorganic HTLs
seem to be a convincing alternative, with materials such as NiO [11], CuI [12,13] or CuSCN [14] being
potential candidates.

CuSCN is a p-type inorganic semiconductor with a wide bandgap (3.4–3.9eV) [15], high hole
mobility, well-aligned work function [16], good thermal stability, high optical transparency and
attractive mechanical properties [17,18]. The collection of the impressive physical and chemical
properties, together with its low cost and commercial availability, has made CuSCN a very suitable
material to be employed as an HTL. A PCE of more than 20% has been reported for PSCs with a
conventional mesostructure TiO2 ETL and CuSCN-reduced graphene oxide (rGO) HTL [19]. However,
for planar n-i-p structures, using the atomic layer deposited TiO2 ETL and CuSCN HTL, a maximum
PCE of 12.7% has been achieved so far [20]. In order to improve the open-circuit voltage in
CuSCN-based PSCs, various functional molecules have been introduced between the perovskite
layer and copper on the surface of CH3NH3PbI3 layers to passivate the defects and improve the contact
between the MAPbI3 and CuSCN layers [21]. Inorganic HTMs can be used in their original form
without additives (which are commonly used in polymers or small molecules), leading to a significant
improvement in the stability of solar cells [22–24]. In some cases, to overcome the instability problems,
double-layer HTMs, such as CuSCN/Spiro-OMeTAD have been considered [21–23].

ETL is also one of the key components of PSCs due to its important role in the interfacial
electron extraction and the final photovoltaic performance [24–27]. Planar structures of PSCs, in both
regular n-i-p and inverted p-i-n stacks, have been widely explored due to the simple manufacturing
process at low temperature and excellent device performance [28]. In the n-i-p PSC configuration,
TiO2 has been used extensively because of the favorable alignment to the conduction band of the
perovskite absorber [29]. On the other hand, the high processing temperature (thermal annealing at
500–600 ◦C) [30], low electron mobility and strong photocatalytic activity represent severe drawbacks
which restrict the use of TiO2 [31]. It is worth noting that a high current –voltage hysteresis is observed
when employing the mesoporous TiO2 ETL [32,33]. It is very likely for this phenomenon to happen
when the charge accumulation is induced by ion migration through the perovskite layer [34,35].
However, when the electronic contacts are optimized and the accumulated charges are well extracted,
the hysteresis will be minimized or completely eliminated [36].

Different approaches have been adopted to overcome this problem. Fullerene and its derivatives
have been used as an interface passivator [37], causing a significant decrement of hysteresis by
improving the electron transfer process. Another approach was based on the use of metal oxides and
transition metals, such as ZnO [38], In2O3 [39], SnO2 [40], ZnS, CdS and CdSe [41,42], and [SiW11O39]−8

polyoxometalate [27] as suitable alternative ETLs to TiO2. While the use of ZnO (with a PCE of 19%) has
severely restricted its development because of thermal instability [43], SnO2 appears to be a promising
choice [44].

SnO2 has high conductivity and electron mobility higher than that of TiO2 by two orders of
magnitude, appropriate energy levels (a wide bandgap ranging from 3.6 to 4.1eV, which reduces the
parasitic absorption caused by the ETL), high chemical/photo-stability and UV resistance [41–45],
leading to its use as a semiconductor in various applications [46–48].

In this work, we present a hysteresis-free, high-efficiency planar PSC based on SnO2 as the ETL and
a P3HT/CuSCN bilayer as the HTL. CuSCN played a key role in improving the PCE of the perovskite
solar cell due to its excellent transparency in the visible light spectrum range [49], high hole mobility [50],
relatively good chemical stability [51] and a simple preparation process [52]. Triple-cation perovskite
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was used as an absorber layer in our PSC, employing a one-step anti-solvent quenching method,
which produced a lower surface roughness and smaller interface contact resistance when compared
with the conventional two-step method [53]. After the final adjustment and optimization, a PCE of
15.3% was obtained by employing a polymer/inorganic bilayer (P3HT/CuSCN) strategy. Moreover,
the atmospheric life span and thermal stability of non-encapsulated PSCs were significantly improved
in P3HT/CUSCN based devices.

2. Materials and Methods

The fabricated devices in this work were made from FTO/glass substrates (Pilkington, 8Ω cm−1,
25 mm × 25 mm), etched by a raster scanning laser (Nd:YVO4 pulsed at 30 kHz average output power,
P = 10 W). The patterned substrates were cleaned in an ultrasonic bath by using deionized water,
acetone and 2-propanol solution for 10 min intervals each. Then FTO was kept under a UV lamp for
20 min, and the SnO2 solution (SnCl2·2H2O, in ethanol, 23.5 mg mL−1) was deposited on the patterned
FTO as ETL by two-step spin coating: 500 rpm with an acceleration of 250 rpm/s (for 4 s), followed by
2000 rpm with an acceleration of 1000 rpm s−1 for 20 s. The substrates were then annealed for 10 min
at 100 ◦C, followed by 180 ◦C for 3 h.

Prior to perovskite deposition, SnO2 substrates were kept under a UV lamp for 1 h and then
immediately transferred to the glove-box. The “mixed perovskite” solution contained FAI (1 M),
CsI (0.05 M), PbI2 (1.1 M), MABr (0.2 M), and PbBr2 (0.22 M) dissolved in anhydrous DMF:DMSO
4:1 (v:v), as reported by Saliba et al. [3].

The perovskite layer was deposited by a one-step anti-solvent quenching method; the spin coating
was performed in two parts, first at a speed of 1000 rpm for 10 s with an acceleration of 250 rpm s−1,
followed by a second step at 6000 rpm for 20 s with 2000 rpm s−1. Chlorobenzene was dripped by
micropipette over the spinning substrate 7 s before the end of the latter. The samples were then
annealed at 100 ◦C on a hot plate for 1 h.

Different concentrations of CuSCN solutions were prepared (15 mg mL−1, 25 mg mL−1 in
dipropyl sulfide). Then 15 mg CuSCN powder was easily dissolved in dipropyl sulfide solvent,
while the dissolution of 25 mg CuSCN in the same solvent required double filtration, with a 0.22 µm
PTFE filter, followed by 1 h at 100 ◦C to obtain a clear solution, and finally the cold solution was
spin-coated at 6000 rpm for 45 s. The substrates were then kept at 100 ◦C for 10 min to remove
any remaining solvent, and another layer of CuSCN was deposited on top of the previous one and
annealed for 10 min at 100 ◦C. In order to improve the stability of the fabricated PSCs to withstand
85 ◦C thermal cycling, a P3HT (124 kDa MW) in chlorobenzene solution was prepared following a
previously reported procedure [54,55]. The P3HT layer was applied below and above the CuSCN
by dynamic deposition following the same procedure as for the CuSCN layer, but without the final
annealing step. At the end, 100 nm Au was deposited using thermal evaporation in a high vacuum
chamber (10−6 mbar). All coating and fabrication steps were performed in a glovebox, except for the
SnO2 deposition. Figure 1 shows a schematic overview of the sample preparation process.

The morphology and the grain size of SnO2, perovskite and HTM layers were investigated by
field emission scanning electron microscopy (FE-SEM, HITACHI (S-4160)). The UV-Vis spectra were
obtained by using a BLACK-Comet UV-Vis spectrometer (Dymax EC-5000 lamp, with irradiance power
of 225 mWcm−2) [56]. Dark J-V measurement and the photocurrent-voltage measurements of the
devices were performed using a solar simulator (ABET Sun 2000, class A) under one-sun illumination
conditions AM 1.5 (100 mWcm−2), calibrated with a certified reference Si cell (RERA Solutions
RR-1002). The electrochemical impedance spectroscopy (EIS) measurements were performed with an
Eco-ChemieAutolab PGSTAT 302N electrochemical workstation controlled with NOVA software in the
frequency range of 0.01 to 100 kHz, under 100 mWcm−2 solar simulator at a bias voltage ranging from
0.7 to 1.0 V.
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Figure 1. Schematic overview of the fabrication process for different types of perovskite solar cells (PSCs).

3. Results

The optical properties of the HTM on the perovskite layer were investigated by UV–Vis absorption
spectroscopy (Figure 2). The absorption edge for all types of samples was observed at 750 nm,
as expected. For the sample with P3HT, a clear onset of the P3HT absorption around 650 nm was
observed [57].
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Figure 2. UV–Vis absorption spectra of perovskite and different HTMs on the perovskite layer. 

The photovoltaic performance of the fabricated PSCs was evaluated under simulated sun AM 
1.5 G (100 mWcm−2). The PV parameters obtained from the J-V curves of the devices are shown in 
Figure 3 and Figure S1 of the Supporting Materials. The corresponding results are also given in Table 
1. 

Figure 2. UV–Vis absorption spectra of perovskite and different HTMs on the perovskite layer.

The photovoltaic performance of the fabricated PSCs was evaluated under simulated sun AM
1.5 G (100 mWcm−2). The PV parameters obtained from the J-V curves of the devices are shown in
Figure 3 and Figure S1 of the Supporting Materials. The corresponding results are also given in Table 1.
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Figure 3. Power Conversion Efficiencies (PCEs) of SnO2/Perovskite/CuSCN/Au-based devices (in two
different concentrations of 15 and 25 mg mL−1 of CuSCN in dipropyl sulfide). The first two sets are
related to single-spin deposition (thickness of the CuSCN = 60 nm), while the last set considers a
double-spin coating CuSCN deposition (thickness = 90 nm). PSC with an active area of 0.09 cm2.

Table 1. Photovoltaic characteristics of the most efficient device of the set. The average ± standard
deviations are reported between brackets.

SnO2/Perovskite/CuSCN/Au Device Jsc(mA cm−2) Voc(V) FF * H **%

15 mg mL−1 CuSCN (single-spin)
20.46

(19.6 ± 0.9)
0.85

(0.77 ± 0.08)
0.48

(0.46 ± 0.02)
8.2

(6.7 ± 1.2)

25 mg mL−1 CuSCN (single-spin)
20.15

(20.0 ± 0.1)
0.93

(0.92 ± 0.01)
0.56

(0.51 ± 0.05)
10.5

(8.8 ± 1.7)

25 mg mL−1 CuSCN (double-spin)
20.87

(20.4± 0.4)
1.02

(0.97 ± 0.05)
0.69

(0.68 ± 0.01)
14.7

(13.2 ± 1.5)

* Fill factor = Pmax/(Isc × Voc). ** Power conversion efficiency = (Isc × Voc × FF/(100)) × 100%.

The concentration of the precursor solution and the thickness of the HTL seemed to play a key
role in the performance assessment of the PSCs. Higher PCE results were obtained with 25 mg mL−1

CuSCN in dipropyl sulfide.
Increasing the thickness of the CuSCN layer up to 90 nm, achieved with a double-spin coating,

improved the maximum (average) efficiency up to 14.7% (13.2%), as reported in Figure 3 and Figure S1,
respectively. This significant improvement is essentially related to the increase in open-circuit voltage
(Voc) and fill factor (FF), as shown in Table 1. Based on the results, by increasing the thickness of the
CuSCN layer, the Voc was significantly increased. This improvement can be attributed to a better
hole extraction due to a reduction in recombination phenomena. On the other hand, a significant
improvement in FF implies a reduction in contact resistance and improved charge transfer processes.

As mentioned before, one of the most important parameters of PSC devices is hysteresis, which is
normally investigated by comparing the forward and backward J-V scan. Figure 4A reports the
measured forward and reverse J-V characteristics for the P3HT/CuSCN-based PSC. A reverse PCE
of 15.3% (Jsc = 21.35 mA, a Voc = 1.00 V, and FF = 0.72%) was achieved, compared with a 14.7%
(Jsc = 21.06 mA, a Voc = 1.00 V, and FF = 0.70%) of the forward measurement. The very limited J-V
hysteresis of the P3HT/CuSCN/Au-based PSC is attributed to the improved electronic connection of
the layers and a lower accumulation of charges in the structure [25].
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The J-V plots for the PSCs with the different situations of the P3HT layer (perovskite-HTL and
HTL-Au interfaces) are shown in Figure 4B. The statistical PCEs are shown in Figure 4C. Furthermore,
the FE-SEM cross-section image from the P3HT/CuSCN-based device is also presented in Figure 4D.

The PV parameters obtained from the J-V curve indicate that the P3HT/CuSCN/Au-based
device (Figure 4C and Figure S2) showed a better performance (PCE = 15.3%), compared with the
CuSCN/P3HT/Au-based device (PCE = 8.8%).

A summary of the statistical analysis of PV parameters, extracted from J-V curves for 12
independent devices, are given in Figure 4C and Figure S2, while max (average ± standard deviation)
PV parameters are reported in Table 2.

Table 2. Photovoltaic characteristics of SnO2/perovskite/HTM/Au devices. Performances of the best
efficiencies are presented, with average values and standard deviation.

PSCs Jsc(mA cm−2) Voc(V) FF η%

SnO2/Perovskite/CuSCN/Au 20.87
(20.4 ± 0.4)

1.02
(0.97 ± 0.05)

0.69
(0.68 ± 0.01)

14.7
(13.2 ± 1.5)

SnO2/Perovskite/P3HT/CuSCN/Au 21.35
(21.2 ± 0.3)

1.00
(0.8 ± 0.2)

0.72
(0.67 ± 0.03)

15.3
(14.54 ± 0.75)

SnO2/Perovskite/CuSCN/P3HT/Au 17.73
(16.90 ± 0.8)

0.96
(0.89 ± 0.07)

0.52
(0.51 ± 0.01)

8.8
(6.89 ± 1.9)

The stability of the non-encapsulated cells, under environmental and thermal conditions, are shown
in Figure 5A,B, respectively. The atmospheric shelf-life of PSCs with a P3HT interlayer (Figure 5A) was
longer than that with only CuSCN. As shown in Figure 5B, the thermal stability of the P3HT/CuSCN/Au
structure turned out to be several times better compared with the devices having other arrangements.
Planar PSCs using the CuSCN HTL or the CuSCN/P3HT HTL rapidly lose their initial efficiency against
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85 ◦C thermal stress, mainly due to the interaction between CuSCN and perovskite. This phenomenon
could be related to a structural change of perovskite surface upon heating at 85 ◦C [58], which could
be accelerated by Cu(II) ions through a reaction with halide ions and form copper halide defects.
Furthermore, due to the constraints on the CuSCN precursor solvent (requirement of polar solvents),
the interaction of such solvents with perovskite surface during deposition of HTM leads to increased
defects on the perovskite layer and accelerates the thermal decomposition. On the other hand, by using
the P3HT/CuSCN bilayer structure as the HTL, the device could retain more than 80% of its initial
efficiency after 100 h of continuous thermal stress. The positive effect of the P3HT layer could be
attributed to: (i) polymeric barrier against diffusion of mobile ions of perovskite layer to the back
contact [59]; (ii) passivation of perovskite surface against polar solvents of the CuSCN precursor;
(iii) reduction in the metal diffusion [59,60]. In particular, the robust hydrophobic nature of P3HT [61],
achieved reasonable passivation against atmospheric water and oxygen.
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To study the intrinsic mechanism ruling the performances of PSCs made with different HTLs,
we performed a series of experiments to identify charge recombination and transfer. Regarding the
evaluation of the recombination process in the fabricated devices (CuSCN and P3HT/CuSCN as HTL),
we used J-V measurement under dark conditions and corresponding Tafel plots as shown in Figure 6A.
Generally, the leakage current of the P3HT/CuSCN was one order lower than that for the device with
CuSCN only. Although both devices showed almost the same shunt resistance and recombination
in the depletion layer, the main difference arose from recombination in the neutral layer, which was
mainly governed by trap-assisted recombination mechanisms.

When the applied bias reached ~0.8 V, the device containing P3HT/CuSCN shows a sharp
trap filling behavior that evidences very high trap-assisted recombination resistance. Furthermore,
despite the addition of an extra (P3HT) layer, there was no sign of increment in the depletion layer’s
recombination, which could be attributed to the intrinsic fast carrier mobility of P3HT and better
coverage of the perovskite interface with P3HT.

The EIS was also carried out under dark conditions at different bias potentials to better define the
electron transport/recombination process within the PSC. The semicircle in the Nyquist plots (Figure S4)
was related to the impedance of the free charge carriers’ recombination at the perovskite/HTM
layer (Rrec). The highest Rrec indicated the lowest recombination process because of the longer free
charge carriers’ lifetime and their proper collection [55]. Figure 6B evidences that the recombination
resistance significantly increased in the presence of a P3HT/CuSCN/Au-based PSCs, in excess of
two orders of magnitude. This improvement could be associated with the uniform coating of the
P3HT/CuSCN layer as well as the supporting role of the P3HT layer in blocking the diffusion of ions.
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In order to calculate the lifetimes of the free charge carriers, constant phase elements (CPE)
were extracted from the Nyquist curves (Figure 6). The highest lifetime was obtained for
P3HT/CuSCN/Au-based under intermediate voltages, compared with those cells having different
arrangements. This is in full agreement with the data obtained from dark J-V and EIS analysis (Figure 6).Energies 2020, 13, x FOR PEER REVIEW 8 of 12 
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HTL) with an active area of 0.09 cm2.

4. Conclusions

A hysteresis-free planar n-i-p perovskite solar cell with a PCE of ~15.3% was developed with a
P3HT/CuSCN bilayer as an HTL. The designed structure exhibited better performance by enhancing
the electron transfer rate and reducing the recombination processes with respect to the typical
CuSCN layer. Therefore, the present work can be considered as an effective and promising way to
realize hysteresis-free SnO2-based planar perovskite solar cells through the use of P3HT/CuSCN as
a cost-effective and suitable HTL alternative to conventional materials, such as Spiro-OMeTAD. It
was further proved that the long-term stability of PSCs can be significantly increased by using P3HT
as an interlayer between the perovskite and CuSCN. By employing this bilayer strategy, PSCs can
maintain more than 80% of their initial PCE after 100 h under the continuous thermal stress conditions
at 85 ◦C. The performance and durability of the PSCs were well improved and the hysteresis effect was
prevented by restraining the perovskite ions, metals and halides migration, emphasizing the pivotal
role that can be played by the interface in the perovskite-additive-HTM stack.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/8/2059/s1,
Figure S1: Photovoltaic parameters of SnO2/Perovskite/CuSCN/Au based devices (with single and double spin
coating of 25 mg mL−1 of CuSCN in dipropyl sulfide).The first two sets are related to single spin deposition
while the set consider a double spin coating CuSCN deposition PSC with an active area of 0.09 cm2, Figure S2:
Photovoltaic parametersof SnO2/perovskite/HTM/Au based devices (with CuSCN, P3HT/CuSCN, CuSCN/P3HT as

http://www.mdpi.com/1996-1073/13/8/2059/s1
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an HTL) with an illumination area of 0.09 cm2, Figure S3: Photovoltaic parameters of SnO2/Perovskite/CuSCN/Au,
SnO2/Perovskite/P3HT/CuSCN/Au and SnO2/Perovskite/CuSCN/P3HT/Au under (A) environmental and (B)
thermal conditions with an illumination area of 0.09 cm2, Figure S4: Nyquist plot and equivalent circuit of
SnO2/Perovskite/CuSCN/Au, SnO2/Perovskite/P3HT/CuSCN/Au at different bias voltage.
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