5 research outputs found

    The Molecular Weight Dependence of Thermoelectric Properties of Poly (3-Hexylthiophene)

    Get PDF
    Organic materials have been found to be promising candidates for low-temperature thermoelectric applications. In particular, poly (3-hexylthiophene) (P3HT) has been attracting great interest due to its desirable intrinsic properties, such as excellent solution processability, chemical and thermal stability, and high field-effect mobility. However, its poor electrical conductivity has limited its application as a thermoelectric material. It is therefore important to improve the electrical conductivity of P3HT layers. In this work, we studied how molecular weight (MW) influences the thermoelectric properties of P3HT films. The films were doped with lithium bis(trifluoromethane sulfonyl) imide salt (LiTFSI) and 4-tert butylpyridine (TBP). Various P3HT layers with different MWs ranging from 21 to 94 kDa were investigated. UV–Vis spectroscopy and atomic force microscopy (AFM) analysis were performed to investigate the morphology and structure features of thin films with different MWs. The electrical conductivity initially increased when the MW increased and then decreased at the highest MW, whereas the Seebeck coefficient had a trend of reducing as the MW grew. The maximum thermoelectric power factor (1.87 μW/mK2) was obtained for MW of 77 kDa at 333 K. At this temperature, the electrical conductivity and Seebeck coefficient of this MW were 65.5 S/m and 169 μV/K, respectively

    The Prevalence of Musculoskeletal Disorders and their Related Factors in Workers of A Dairy Factory, Nishabur, Iran

    Get PDF
    Background: Nowadays, musculoskeletal diseases are among the most prevalent occupational diseases. They are also considered as one of the main reasons for absence from work and probably reduced productivity. Improper conditions at workplace can result in musculoskeletal disorders. The aim of this study was to estimate the prevalence of symptoms of musculoskeletal disorders in workers of a dairy factory. Methods: In this analytical cross-sectional study, 50 workers of a dairy factory in Nishabur, Iran, were evaluated. The standardized Nordic questionnaire was used to assess the prevalence of musculoskeletal disorders. The data was analyzed in SPSS18. Results: The mean age of the workers was 29.5 years. Their mean duration of employment was 4.3 years. Overall, 76% of the participants had experienced musculoskeletal disorders at one of their extremities. The highest prevalence of musculoskeletal disorders in the past 12 months was detected in knees (28%), waist (26%), and feet (24%). Age and years of employment had the strongest correlation with the incidence of musculoskeletal disorders. Conclusion: Working conditions of factory workers should be improved through controlling hazardous ergonomic factors. Risk factors of musculoskeletal disorders can also be reduced by education and using equipments such as forklifts and conveyors. Keywords: Prevalence, Musculoskeletal disorders, Dairy factory, Nordic questionnair

    The Molecular Weight Dependence of Thermoelectric Properties of Poly (3-Hexylthiophene)

    No full text
    Organic materials have been found to be promising candidates for low-temperature thermoelectric applications. In particular, poly (3-hexylthiophene) (P3HT) has been attracting great interest due to its desirable intrinsic properties, such as excellent solution processability, chemical and thermal stability, and high field-effect mobility. However, its poor electrical conductivity has limited its application as a thermoelectric material. It is therefore important to improve the electrical conductivity of P3HT layers. In this work, we studied how molecular weight (MW) influences the thermoelectric properties of P3HT films. The films were doped with lithium bis(trifluoromethane sulfonyl) imide salt (LiTFSI) and 4-tert butylpyridine (TBP). Various P3HT layers with different MWs ranging from 21 to 94 kDa were investigated. UV–Vis spectroscopy and atomic force microscopy (AFM) analysis were performed to investigate the morphology and structure features of thin films with different MWs. The electrical conductivity initially increased when the MW increased and then decreased at the highest MW, whereas the Seebeck coefficient had a trend of reducing as the MW grew. The maximum thermoelectric power factor (1.87 μW/mK2) was obtained for MW of 77 kDa at 333 K. At this temperature, the electrical conductivity and Seebeck coefficient of this MW were 65.5 S/m and 169 μV/K, respectively

    Melatonin and endothelial cell-loaded alginate-fibrin hydrogel promoted angiogenesis in rat cryopreserved/thawed ovaries transplanted to the heterotopic sites

    No full text
    Abstract Background Ischemic niche can promote follicular atresia following the transplantation of cryopreserved/thawed ovaries to the heterotopic sites. Thus, the promotion of blood supply is an effective strategy to inhibit/reduce the ischemic damage to ovarian follicles. Here, the angiogenic potential of alginate (Alg) + fibrin (Fib) hydrogel enriched with melatonin (Mel) and CD144+ endothelial cells (ECs) was assessed on encapsulated cryopreserved/thawed ovaries following transplantation to heterotopic sites in rats. Methods Alg + Fib hydrogel was fabricated by combining 2% (w/v) sodium Alg, 1% (w/v) Fib, and 5 IU thrombin at a ratio of 4: 2: 1, respectively. The mixture was solidified using 1% CaCl2. Using FTIR, SEM, swelling rate, and biodegradation assay, the physicochemical properties of Alg + Fib hydrogel were evaluated. The EC viability was examined using an MTT assay. Thirty-six adult female rats (aged between 6 and 8 weeks) with a normal estrus cycle were ovariectomized and enrolled in this study. Cryopreserved/thawed ovaries were encapsulated in Alg + Fib hydrogel containing 100 µM Mel + CD144+ ECs (2 × 104 cells/ml) and transplanted into the subcutaneous region. Ovaries were removed after 14 days and the expression of Ang-1, and Ang-2 was monitored using real-time PCR assay. The number of vWF+ and α-SMA+ vessels was assessed using IHC staining. Using Masson’s trichrome staining, fibrotic changes were evaluated. Results FTIR data indicated successful interaction of Alg with Fib in the presence of ionic cross-linker (1% CaCl2). Data confirmed higher biodegradation and swelling rates in Alg + Fib hydrogel compared to the Alg group (p < 0.05). Increased viability was achieved in encapsulated CD144+ ECs compared to the control group (p < 0.05). IF analysis showed the biodistribution of Dil+ ECs within hydrogel two weeks after transplantation. The ratio of Ang-2/Ang-1 was statistically up-regulated in the rats that received Alg + Fib + Mel hydrogel compared to the control-matched groups (p < 0.05). Based on the data, the addition of Mel and CD144+ ECs to Alg + Fib hydrogel reduced fibrotic changes. Along with these changes, the number of vWF+ and α-SMA+ vessels was increased in the presence of Mel and CD144+ ECs. Conclusions Co-administration of Alg + Fib with Mel and CD144+ ECs induced angiogenesis toward encapsulated cryopreserved/thawed ovarian transplants, resulting in reduced fibrotic changes

    The burden of metabolic risk factors in North Africa and the Middle East, 1990–2019: findings from the Global Burden of Disease StudyResearch in context

    No full text
    Summary: Background: The objective of this study is to investigate the trends of exposure and burden attributable to the four main metabolic risk factors, including high systolic blood pressure (SBP), high fasting plasma glucose (FPG), high body-mass index (BMI), and high low-density lipoproteins cholesterol (LDL) in North Africa and the Middle East from 1990 to 2019. Methods: The data were retrieved from Global Burden of Disease Study 2019. Summary exposure value (SEV) was used for risk factor exposure. Burden attributable to each risk factor was incorporated in the population attributable fraction to estimate the total attributable deaths and disability-adjusted life-years (DALYs). Findings: While age-standardized death rate (ASDR) attributable to high-LDL and high-SBP decreased by 26.5% (18.6–35.2) and 23.4% (15.9–31.5) over 1990–2019, respectively, high-BMI with 5.1% (−9.0–25.9) and high-FPG with 21.4% (7.0–37.4) change, grew in ASDR. Moreover, age-standardized DALY rate attributed to high-LDL and high-SBP declined by 30.2% (20.9–39.0) and 25.2% (16.8–33.9), respectively. The attributable age-standardized DALY rate of high-BMI with 8.3% (−6.5–28.8) and high-FPG with 27.0% (14.3–40.8) increase, had a growing trend. Age-standardized SEVs of high-FPG, high-BMI, high-SBP, and high-LDL increased by 92.4% (82.8–103.3), 76.0% (58.9–99.3), 10.4% (3.8–18.0), and 5.5% (4.3–7.1), respectively. Interpretation: The burden attributed to high-SBP and high-LDL decreased during the 1990–2019 period in the region, while the attributable burden of high-FPG and high-BMI increased. Alarmingly, exposure to all four risk factors increased in the past three decades. There has been significant heterogeneity among the countries in the region regarding the trends of exposure and attributable burden. Urgent action is required at the individual, community, and national levels in terms of introducing effective strategies for prevention and treatment that account for local and socioeconomic factors. Funding: Bill &amp; Melinda Gates Foundation
    corecore