394 research outputs found

    Model-independent measurements of the sodium magneto-optical trap's excited-state population

    Get PDF
    We present model-independent measurements of the excited-state population of atoms in a sodium (Na) magneto-optical trap (MOT) using a hybrid ion-neutral trap composed of a MOT and a linear Paul trap (LPT). We photoionize excited Na atoms trapped in the MOT and use two independent methods to measure the resulting ions: directly by trapping them in our LPT, and indirectly by monitoring changes in MOT fluorescence. By measuring the ionization rate via these two independent methods, we have enough information to directly determine the population of MOT atoms in the excited-state. The resulting measurement reveals that there is a range of trapping-laser intensities where the excited-state population of atoms in our MOT follows the standard two-level model intensity-dependence. However, an experimentally determined effective saturation intensity must be used instead of the theoretically predicted value from the two-level model. We measured the effective saturation intensity to be Ise=22.9(3)mW/cm2I_\mathrm{se}=22.9(3)\:\textrm{mW}/\textrm{cm}^2 for the type-I Na MOT and Ise=48.9(7)  mW/cm2I_\mathrm{se}=48.9(7)\;\textrm{mW}/\textrm{cm}^2 for the type-II Na MOT, approximately 1.7 and 3.6 times the theoretical estimate, respectively. Lastly, at large trapping-laser intensities, our experiment reveals a clear departure from the two-level model at a critical intensity that we believe is due to a state-mixing effect, whose critical intensity can be determined by a simple power broadening model.Comment: 10 pages, 8 figure

    T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1

    Get PDF
    T Cell Leukemia/Lymphoma 1A is expressed during B-cell differentiation and, when overexpressed, acts as an oncogene in mouse (Tcl1a) and human (TCL1A) B-cell chronic lymphocytic leukemia (B-CLL) and T-cell prolymphocytic leukemia (T-PLL). Furthermore, in the murine system Tcl1a is expressed in the ovary, testis and in pre-implantation embryos, where it plays an important role in blastomere proliferation and in embryonic stem cell (ESC) proliferation and self-renewal. We have also observed that Tcl1-/-adult mice exhibit alopecia and deep ulcerations. This finding has led us to investigate the role of TCL1 in mouse skin and hair follicles. We have found that TCL1 is expressed in the proliferative structure (i.e.The secondary hair germ) and in the stem cell niche (i.e.The bulge) of the hair follicle during regeneration phase and it is constitutively expressed in the basal layer of epidermis where it is required for the correct proliferative-differentiation program of the keratinocytes (KCs). Taking advantage of the murine models we have generated, including the Tcl1-/-and the K14-TCL1 transgenic mouse, we have analysed the function of TCL1 in mouse KCs and the molecular pathways involved. We provide evidence that in the epidermal compartment TCL1 has a role in the regulation of KC proliferation, differentiation, and apoptosis. In particular, the colony-forming efficiency (CFE) and the insulin-like growth factor 1 (IGF1)-induced proliferation are dramatically impaired, while apoptosis is increased, in KCs from Tcl1-/-mice when compared to WT. Moreover, the expression of differentiation markers such as cytokeratin 6 (KRT6), filaggrin (FLG) and involucrin (IVL) are profoundly altered in mutant mice (Tcl1-/-). Importantly, by over-expressing TCL1A in basal KCs of the K14-TCL1 transgenic mouse model, we observed a significant rescue of cell proliferation, differentiation and apoptosis of the mutant phenotype. Finally, we found TCL1 to act, at least in part, via increasing phospho-ERK1/2 and decreasing phospho-P38 MAPK. Hence, our data demonstrate that regulated levels of Tcl1a are necessary for the correct proliferation and differentiation of the interfollicular KC

    Evidence of sympathetic cooling of Na+ ions by a Na MOT in a hybrid trap

    Full text link
    A hybrid ion-neutral trap provides an ideal system to study collisional dynamics between ions and neutrals. This system provides a general cooling method that can be applied to optically inaccessible species and can also potentially cool internal degrees of freedom. The long range polarization potentials (Vα/r4V\propto-\alpha/r^4) between ions and neutrals result in large scattering cross sections at cold temperatures, making the hybrid trap a favorable system for efficient sympathetic cooling of ions by collisions with neutral atoms. We present experimental evidence of sympathetic cooling in a hybrid trap of \ce{Na+} ions, which are closed shell and therefore do not have a laser induced atomic transition, by equal mass cold Na atoms in a magneto-optical trap (MOT).Comment: 7 figure

    Heisenberg scaling precision in multi-mode distributed quantum metrology

    Get PDF
    We consider the estimation of an arbitrary parameter φ, such as the temperature or a magnetic field, affecting in a distributed manner the components of an arbitrary linear optical passive network, such as an integrated chip. We demonstrate that Heisenberg scaling precision (i.e. of the order of 1/N, where N is the number of probe photons) can be achieved without any iterative adaptation of the interferometer hardware and by using only a simple, single, squeezed light source and well-established homodyne measurements techniques. Furthermore, no constraint on the possible values of the parameter is needed but only a preliminary shot-noise estimation (i.e. with a precision of) easily achievable without any quantum resources. Indeed, such a classical knowledge of the parameter is enough to prepare a single, suitable optical stage either at the input or the output of the network to monitor with Heisenberg-limited precision any variation of the parameter to the order of without the need to iteratively modify such a stage

    Absorption spectrum of optically bistable systems

    Get PDF
    The quantum-mechanical theory of optical bistability developed in an earlier paper is generalized to calculate the absorption spectrum (gain coefficient) of an optically bistable system in the presence of a weak probe field. The behavior of the gain coefficient on the cooperative branch and the single-atom branch is analyzed in detail

    Sub-natural linewidth in room-temperature Rb vapor using a control laser

    Full text link
    We demonstrate two ways of obtaining sub-natural linewidth for probe absorption through room-temperature Rb vapor. Both techniques use a control laser that drives the transition from a different ground state. The coherent drive splits the excited state into two dressed states (Autler-Townes doublet), which have asymmetric linewidths when the control laser is detuned from resonance. In the first technique, the laser has a large detuning of 1.18 GHz to reduce the linewidth to 5.1 MHz from the Doppler width of 560 MHz. In the second technique, we use a counter-propagating pump beam to eliminate the first-order Doppler effect. The unperturbed probe linewidth is about 13 MHz, which is reduced below 3 MHz (0.5 \Gamma) at a detuning of 11.5 MHz.Comment: 4 pages, 7 figure

    A virtual customer assistant for the wealth management domain in the UWMP project

    Get PDF
    The Universal Wealth Management Platform (UWMP) project has the objective of creating a new service model in the financial domain. An integral part of this service model is the creation of a new Virtual Customer Assistant, that is able to assist customers via natural language dialogues. This paper is a report of the activities performed to develop this assistant. It illustrates a general architecture of the system, and describes the most important decisions made for its implementation. It also describes the main financial operations that it is able to assist customers with. Finally, it delineates some avenues for future work

    Magnetic field imaging with atomic Rb vapor

    Full text link
    We demonstrate the possibility of dynamic imaging of magnetic fields using electromagnetically induced transparency in an atomic gas. As an experimental demonstration we employ an atomic Rb gas confined in a glass cell to image the transverse magnetic field created by a long straight wire. In this arrangement, which clearly reveals the essential effect, the field of view is about 2 x 2 mm^2 and the field detection uncertainty is 0.14 mG per 10 um x 10 um image pixel.Comment: 4 pages, 3 figure

    Ion-neutral sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap

    Full text link
    Long range polarization forces between ions and neutral atoms result in large elastic scattering cross sections, e.g., 10^6 a.u. for Na+ on Na or Ca+ on Na at cold and ultracold temperatures. This suggests that a hybrid ion-neutral trap should offer a general means for significant sympathetic cooling of atomic or molecular ions. We present SIMION 7.0 simulation results concerning the advantages and limitations of sympathetic cooling within a hybrid trap apparatus, consisting of a linear rf Paul trap concentric with a Na magneto-optical trap (MOT). This paper explores the impact of various heating mechanisms on the hybrid system and how parameters related to the MOT, Paul trap, number of ions, and ion species affect the efficiency of the sympathetic cooling
    corecore