1,234 research outputs found

    Testing the accuracy of reflection-based supermassive black hole spin measurements in AGN

    Full text link
    X-ray reflection is a very powerful method to assess the spin of supermassive black holes (SMBHs) in active galactic nuclei (AGN), yet this technique is not universally accepted. Indeed, complex reprocessing (absorption, scattering) of the intrinsic spectra along the line of sight can mimic the relativistic effects on which the spin measure is based. In this work, we test the reliability of SMBH spin measurements that can currently be achieved through the simulations of high-quality XMM-Newton and NuSTAR spectra. Each member of our group simulated ten spectra with multiple components that are typically seen in AGN, such as warm and (partial-covering) neutral absorbers, relativistic and distant reflection, and thermal emission. The resulting spectra were blindly analysed by the other two members. Out of the 60 fits, 42 turn out to be physically accurate when compared to the input model. The SMBH spin is retrieved with success in 31 cases, some of which (9) are even found among formally inaccurate fits (although with looser constraints). We show that, at the high signal-to-noise ratio assumed in our simulations, neither the complexity of the multi-layer, partial-covering absorber nor the input value of the spin are the major drivers of our results. The height of the X-ray source (in a lamp-post geometry) instead plays a crucial role in recovering the spin. In particular, a success rate of 16 out of 16 is found among the accurate fits for a dimensionless spin parameter larger than 0.8 and a lamp-post height lower than five gravitational radii.Comment: 20 pages, 9 figures, 4 tables. Accepted for publication in A&

    An Examination of the Spectral Variability in NGC 1365 with Suzaku

    Full text link
    We present jointly analyzed data from three deep Suzaku observations of NGC 1365. These high signal-to-noise spectra enable us to examine the nature of this variable, obscured AGN in unprecedented detail on timescales ranging from hours to years. We find that, in addition to the power-law continuum and absorption from ionized gas seen in most AGN, inner disk reflection and variable absorption from neutral gas within the Broad Emission Line Region are both necessary components in all three observations. We confirm the clumpy nature of the cold absorbing gas, though we note that occultations of the inner disk and corona are much more pronounced in the high-flux state (2008) than in the low-flux state (2010) of the source. The onset and duration of the "dips" in the X-ray light curve in 2010 are both significantly longer than in 2008, however, indicating that either the distance to the gas from the black hole is larger, or that the nature of the gas has changed between epochs. We also note significant variations in the power-law flux over timescales similar to the cold absorber, both within and between the three observations. The warm absorber does not vary significantly within observations, but does show variations in column density of a factor of more than 10 on timescales less than 2 weeks that seem unrelated to the changes in the continuum, reflection or cold absorber. By assuming a uniform iron abundance for the reflection and absorption, we have also established that an iron abundance of roughly 3.5 times the solar value is sufficient to model the broad-band spectrum without invoking an additional partial-covering absorber. Such a measurement is consistent with previous published constraints from the 2008 Suzaku observation alone, and with results from other Seyfert AGN in the literature.Comment: 19 pages, 11 figures, accepted for publication in MNRA

    The circumnuclear environment of IRAS 20551-4250 a case study of AGN/Starburst connection for JWST

    Get PDF
    We present a general review of the current knowledge of IRAS 20551-4250 and its circumnuclear environment. This Ultraluminous Infrared Galaxy is one of the most puzzling sources of its class in the nearby Universe: the near-IR spectrum is typical of a galaxy experiencing a very intense starburst, but a highly obscured active nucleus is identified beyond 5 micron and possibly dominates the mid-IR energy output of the system. At longer wavelengths star formation is again the main driver of the global spectral shape and features. We interpret all the available IR diagnostics in the framework of simultaneous black hole growth and star formation, and discuss the key properties that make this source an ideal laboratory for the forthcoming James Webb Space Telescope.Comment: 19 pages, 7 figures, 2 tables. Accepted for pubblication in Advances in Astronomy. To appear in the special issue: "Seeking for the Leading Actor on the Cosmic Stage: Galaxies versus Supermassive Black Holes

    Analysis of Spitzer-IRS spectra of hyperluminous infrared galaxies

    Full text link
    Hyperluminous infrared galaxies (HLIRG) are the most luminous persistent objects in the Universe. They exhibit extremely high star formation rates, and most of them seem to harbour an AGN. They are unique laboratories to investigate the most extreme star formation, and its connection to super-massive black hole growth. The AGN and SB relative contributions to the total output in these objects is still debated. Our aim is to disentangle the AGN and SB emission of a sample of thirteen HLIRG. We have studied the MIR low resolution spectra of a sample of thirteen HLIRG obtained with the IRS on board Spitzer. The 5-8 {\mu}m range is an optimal window to detect AGN activity even in a heavily obscured environment. We performed a SB/AGN decomposition of the continuum using templates, successfully applied for ULIRG in previous works. The MIR spectra of all sources is largely dominated by AGN emission. Converting the 6 {\mu}m luminosity into IR luminosity, we found that ~80% of the sample shows an IR output dominated by the AGN emission. However, the SB activity is significant in all sources (mean SB contribution ~30%), showing star formation rates ~300-3000 solar masses per year. Using X-ray and MIR data we estimated the dust covering factor (CF) of these HLIRG, finding that a significant fraction presents a CF consistent with unity. Along with the high X-ray absorption shown by these sources, this suggests that large amounts of dust and gas enshroud the nucleus of these HLIRG, as also observed in ULIRG. Our results are in agreement with previous studies of the IR SED of HLIRG using radiative transfer models, and we find strong evidence that all HLIRG harbour an AGN. This work provides further support to the idea that AGN and SB are both crucial to understand the properties of HLIRG. Our study of the CF supports the hypothesis that HLIRG can be divided in two different populations.Comment: 17 pages, 9 figures, 4 tables. Accepted for publication in A&

    Gravitational Backreaction Effects on the Holographic Phase Transition

    Full text link
    We study radion stabilization in the compact Randall-Sundrum model by introducing a bulk scalar field, as in the Goldberger and Wise mechanism, but (partially) taking into account the backreactions from the scalar field on the metric. Our generalization reconciles the radion potential found by Goldberger and Wise with the radion mass obtained with the so-called superpotential method where backreaction is fully considered. Moreover we study the holographic phase transition and its gravitational wave signals in this model. The improved control over backreactions opens up a large region in parameter space and leads, compared to former analysis, to weaker constraints on the rank N of the dual gauge theory. We conclude that, in the regime where the 1/N expansion is justified, the gravitational wave signal is detectable by LISA.Comment: 42 pages, 4 figures; v2: minor changes for the publicatio

    Towards an informed quest for accretion disc winds in quasars: the intriguing case of Ton 28

    Get PDF
    We report on the detection of a blueshifted Fe K absorption feature in two consecutive XMM–Newton  observations of the luminous blue quasar Ton 28, at the 4σ cumulative significance. The rest energy of 9.2 keV implies the presence of an accretion disc wind with bulk outflow velocity of ∼0.28c, while the kinetic power is most likely a few per cent of the quasar luminosity. Remarkably, Ton 28 had been specifically selected as an optimal target to reveal an ultra-fast X-ray wind based on its total luminosity (Lbol > 1046 erg s−1) and [O III] λ5007 Å equivalent width (EW < 6 Å), suggestive of high accretion rate and low inclination, respectively. Other peculiar optical/UV emission-line properties include narrow Hβ, strong Fe II, and blueshifted C IV . These are key parameters in the Eigenvector 1 formalism, and are frequently found in active galaxies with ongoing accretion disc winds, hinting at a common physical explanation. Provided that the effectiveness of our selection method is confirmed with similar sources, this result could represent the first step towards the characterization of black hole winds through multiwavelength indicators in the absence of high-quality X-ray spectra

    Classical Nucleation Theory for Active Fluid Phase Separation

    Full text link
    Classical nucleation theory (CNT), linking rare nucleation events to the free energy landscape of a growing nucleus, is central to understanding phase-change kinetics in passive fluids. Nucleation in non-equilibrium systems is much harder to describe because there is no free energy, but instead a dynamics-dependent quasi-potential that typically must be found numerically. Here we extend CNT to a class of active phase separating systems governed by a minimal field-theoretic model (Active Model B+). In the small noise and supersaturation limits that CNT assumes, we compute analytically the quasi-potential, and hence nucleation barrier, for liquid-vapor phase separation. Crucially to our results, detailed balance, although broken microscopically by activity, is restored along the instanton trajectory, which in CNT involves the nuclear radius as the sole reaction coordinate

    Clinical significance of epithelial-to-mesenchymal transition in laryngeal carcinoma: Its role in the different subsites

    Get PDF
    Background: During epithelial-to-mesenchymal transition, cancer cells lose adhesion capacity gaining migratory properties. The role of the process on prognosis has been evaluated in 50 cases of laryngeal carcinoma. Methods: E-cadherin, N-cadherin, β-catenin, α-catenin, γ-catenin, caveolin-1, and vimentin immunohistochemical expression were evaluated using a double score based on staining intensity and cellular localization. Results: Cytoplasmic E-cadherin and α/γ catenin staining were associated with a decrease in survival, cytoplasmic β-catenin was associated with advanced stage, and N-cadherin and vimentin expression were associated with poor differentiation and tumor relapse. On the basis of cancer cells, epithelial or mesenchymal morphological and immunophenotypic similarity we identified 4 main subgroups correlated with a transition to a more undifferentiated phenotype, which have a different pattern of relapse and survival. Conclusion: The negative prognostic role of epithelial-to-mesenchymal transition has been confirmed and a predictive role in glottic tumors has been suggested, leading us to propose epithelial-to-mesenchymal transition as an additional adverse feature in laryngeal carcinoma
    corecore