394 research outputs found
Management of patients with Graves' disease and orbital involvement: role of spectral domain optical coherence tomography
PURPOSE:
To investigate the role of choroidal thickness evaluation with spectral domain optical coherence tomography (SDOCT) and enhanced depth imaging (EDI) technique in the management of patients with Graves' disease and orbitopathy (GO).
METHODS:
Thirty-six eyes of 18 patients with GO and 36 eyes of 18 age-matched control subjects were included in this retrospective observational study. All the subjects underwent a complete ophthalmological evaluation, including clinical activity score (CAS) and exophthalmometry. The SDOCT images of the choroid were obtained by EDI modality.
RESULTS:
Choroidal thickness was significantly increased in GO than in control eyes (p < 0.01). A significant correlation was found between choroidal thickness and CAS, proptosis, and the duration of disease (p < 0.05).
CONCLUSION:
This study shows that choroidal thickness, evaluated with EDI-OCT, is significantly increased in patients with GO and correlates with the activity of the disease, proptosis, and duration of the disease. The choroidal thickening may reflect the ocular hemodynamic changes, and enhanced depth imaging optical coherence tomography may be a useful tool for the evaluation of orbital congestion and management of patients with Graves' disease and orbital involvement
Optical coherence tomography angiography in Tuberous sclerosis complicated with macular choroidal neovascularization
This study describe the optical coherence tomography angiography (OCTA) features of a young patient with Tuberous sclerosis complicated with CNV unilateral macular choroidal neovascularization during the ranibizumab therapy. OCTA scans of macular region of right eye, revealed a dense microvascular network confirming the diagnosis of CNV. After four monthly intravitreal injections, OCTA revealed a decrease of size and activity of CNV. OCTA is a valid, non-invasive, dyeless, and reliable method that could improve the diagnosis and management of CNV in child with Tuberous sclerosis
Variability in Floral Scent in Rewarding and Deceptive Orchids: The Signature of Pollinator-imposed Selection?
Background and Aims A comparative investigation was made of floral scent variation in the closely related, food-rewarding Anacamptis coriophora and the food-deceptive Anacamptis morio in order to identify patterns of variability of odour compounds in the two species and their role in pollinator attraction/avoidance learning. Methods Scent was collected from plants in natural populations and samples were analysed via quantitative gas chromatography and mass spectrometry. Combined gas chromatography and electroantennographic detection was used to identify compounds that are detected by the pollinators. Experimental reduction of scent variability was performed in the field with plots of A. morio plants supplemented with a uniform amount of anisaldehyde. Key Results Both orchid species emitted complex odour bouquets. In A. coriophora the two main benzenoid compounds, hydroquinone dimethyl ether (1,4-dimethoxybenzene) and anisaldehyde (methoxybenzaldehyde), triggered electrophysiological responses in olfactory neurons of honey-bee and bumble-bee workers. The scent of A. morio, however, was too weak to elicit any electrophysiological responses. The overall variation in scent was significantly lower in the rewarding A. coriophora than in the deceptive A. morio, suggesting pollinator avoidance-learning selecting for high variation in the deceptive species. A. morio flowers supplemented with non-variable scent in plot experiments, however, did not show significantly reduced pollination success. Conclusions Whereas in the rewarding A. coriophora stabilizing selection imposed by floral constancy of the pollinators may reduce scent variability, in the deceptive A. morio the emitted scent seems to be too weak to be detected by pollinators and thus its high variability may result from relaxed selection on this floral trai
Traumatic brain injury and suicide risk
Among the various consequences of traumatic brain injury (TBI), evidence supports the notion that individuals exposed to such events may be at higher risk of suicide. We therefore aim at reviewing the literature by focusing on possible association between TBI and features of the suicidal spectrum, such as suicidal ideation, suicide attempts and completed suicides. We carried out a computerized search for reports of studies involving TBI and suicide risk. A total of 35 reports provide data with preliminary support of this association. Seven articles showed a direct correlation between TBI and completed suicides. Thirteen articles have shown a direct relationship between TBI and suicide attempts; five articles demonstrated a positive correlation with suicidal ideation and suicidality. We also found negative results failing to show a correlation between TBI and completed suicides (one article), suicide attempts (one article) and suicidality (one article). In addition, one article showed that patients who received psychological treatment (CBT therapy) after suffering a head injury showed a significant reduction in suicidal ideation. These preliminary findings encourage further testing of the association between TBI and suicide risk regardless of the psychiatric history. Furthermore, those who have a history of psychiatric illness before the TBI present a greater risk of suicide than those who do not have psychiatric precedents
Mini-extracorporeal circulation minimizes coagulation abnormalities and ameliorates pulmonary outcome in coronary artery bypass grafting surgery
Hemostasis is impaired during CABG and coagulation abnormalities often result in clinically relevant organ dysfunctions, eventually increasing morbidity and mortality rates. Fifteen consecutive patients with coronary artery disease submitted to conventional extracorporeal circulation (cECC) have been compared with 15 matched patients, using mini-ECC (MECC). Postoperative lung function was evaluated according to gas exchange, intubation time and lung injury score. In the MECC group, thrombin-antithrombin complex levels (TaTc), prothrombin fragments (PF1+2) formation and thromboelastography (TEG) clotting times were lower compared to the cECC group (p=0.002 and p<0.001, respectively) whereas postoperative blood loss was higher in the cECC group (p=0.030) and more patients required blood transfusion (p=0.020). In the MECC group, postoperative gas exchange values were better, intubation time shorter and lung injury score lower (p<0.001 for all comparisons). Our study suggests that MECC induces less coagulation disorders, leading to lower postoperative blood loss and better postoperative lung function. This approach may be advantageous in high-risk patients. © The Author(s) 2013
Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein–protein interaction modules, involved in several cellular pathways such as signal transduction, cell–cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo
A Bio-Conjugated Fullerene as a Subcellular-Targeted and Multifaceted Phototheranostic Agent
Fullerenes are candidates for theranostic applications because of their high photodynamic activity and intrinsic multimodal imaging contrast. However, fullerenes suffer from low solubility in aqueous media, poor biocompatibility, cell toxicity, and a tendency to aggregate. C70@lysozyme is introduced herein as a novel bioconjugate that is harmless to a cellular environment, yet is also photoactive and has excellent optical and optoacoustic contrast for tracking cellular uptake and intracellular localization. The formation, water-solubility, photoactivity, and unperturbed structure of C70@lysozyme are confirmed using UV-visible and 2D 1H, 15N NMR spectroscopy. The excellent imaging contrast of C70@lysozyme in optoacoustic and third harmonic generation microscopy is exploited to monitor its uptake in HeLa cells and lysosomal trafficking. Last, the photoactivity of C70@lysozyme and its ability to initiate cell death by means of singlet oxygen (1O2) production upon exposure to low levels of white light irradiation is demonstrated. This study introduces C70@lysozyme and other fullerene-protein conjugates as potential candidates for theranostic applications
Translation-Dependent Mechanisms Lead to PML Upregulation and Mediate Oncogenic K-RAS-Induced Cellular Senescence
Expression of oncogenic K-RAS in primary cells elicits oncogene-induced cellular senescence (OIS), a form of growth arrest that potently opposes tumourigenesis. This effect has been largely attributed to transcriptional mechanisms that depend on the p53 tumour suppressor protein. The PML tumour suppressor was initially identified as a component of the oncoprotein of acute promyelocytic leukaemia (APL). PML, a critical OIS mediator, is upregulated by oncogenic K-RAS in vivo and in vitro. We demonstrate here that oncogenic K-RAS induces PML protein upregulation by activating the RAS/MEK1/mTOR/eIF4E pathway even in the absence of p53. Under these circumstances, PML mRNA is selectively associated to polysomes. Importantly, we find that the PML 5′ untranslated mRNA region plays a key role in mediating PML protein upregulation and that its presence is essential for an efficient OIS response. These findings demonstrate that upregulation of PML translation plays a central role in oncogenic K-RAS-induced OIS. Thus, selective translation initiation plays a critical role in tumour suppression with important therapeutic implications for the treatment of solid tumours and APL
- …