11,467 research outputs found

    Itraconazole-induced Torsade de Pointes in a patient receiving methadone substitution therapy

    Get PDF
    Issues. Methadone, a pharmacological agent used to treat heroin dependence is relatively safe, but may cause cardiac arrhythmias in the concurrent presence of other risk factors. Approach and Key Findings. This case report highlights the risk of Torsade de Pointes, a life-threatening cardiac arrhythmia, in a heroin-dependent patient receiving methadone substitution therapy who was prescribed itraconazole for vaginal thrush. The patient presented to the accident and emergency department for chest discomfort and an episode of syncope following two doses of itraconazole (200 mg). Electrocardiogram monitoring at the accident and emergency department showed prolonged rate-corrected QT interval leading to Torsade de Pointes. The patient was admitted for cardiac monitoring, and electrocardiogram returned to normal upon discontinuation of methadone. Implication. This cardiac arrhythmia was most likely as a result of a drug interaction between methadone and itraconazole because the patient presented with no other risk factors. Conclusion. Given the benefits of methadone as a substitution treatment for heroin-dependent individuals, the association between methadone and cardiac arrhythmias is of great concern. Physicians treating heroin-dependent patients on methadone substitution therapy should therefore be cautious of the potential risk of drug interactions that may lead to fatal cardiac arrhythmias

    Uplink Linear Receivers for Multi-cell Multiuser MIMO with Pilot Contamination: Large System Analysis

    Full text link
    Base stations with a large number of transmit antennas have the potential to serve a large number of users at high rates. However, the receiver processing in the uplink relies on channel estimates which are known to suffer from pilot interference. In this work, making use of the similarity of the uplink received signal in CDMA with that of a multi-cell multi-antenna system, we perform a large system analysis when the receiver employs an MMSE filter with a pilot contaminated estimate. We assume a Rayleigh fading channel with different received powers from users. We find the asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of antennas and number of users per base station grow large while maintaining a fixed ratio. Through the SINR expression we explore the scenario where the number of users being served are comparable to the number of antennas at the base station. The SINR explicitly captures the effect of pilot contamination and is found to be the same as that employing a matched filter with a pilot contaminated estimate. We also find the exact expression for the interference suppression obtained using an MMSE filter which is an important factor when there are significant number of users in the system as compared to the number of antennas. In a typical set up, in terms of the five percentile SINR, the MMSE filter is shown to provide significant gains over matched filtering and is within 5 dB of MMSE filter with perfect channel estimate. Simulation results for achievable rates are close to large system limits for even a 10-antenna base station with 3 or more users per cell.Comment: Accepted for publication in IEEE Transactions on Wireless Communication

    Cellular Systems with Many Antennas: Large System Analysis under Pilot Contamination

    Full text link
    Base stations with a large number of transmit antennas have the potential to serve a large number of users simultaneously at higher rates. They also promise a lower power consumption due to coherent combining at the receiver. However, the receiver processing in the uplink relies on the channel estimates which are known to suffer from pilot interference. In this work, we perform an uplink large system analysis of multi-cell multi-antenna system when the receiver employs a matched filtering with a pilot contaminated estimate. We find the asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of antennas and number of users per base station grow large while maintaining a fixed ratio. To do this, we make use of the similarity of the uplink received signal in a multi-antenna system to the representation of the received signal in CDMA systems. The asymptotic SINR expression explicitly captures the effect of pilot contamination and that of interference averaging. This also explains the SINR performance of receiver processing schemes at different regimes such as instances when the number of antennas are comparable to number of users as well as when antennas exceed greatly the number of users. Finally, we also propose that the adaptive MMSE symbol detection scheme, which does not require the explicit channel knowledge, can be employed for cellular systems with large number of antennas.Comment: 5 pages, 4 figure

    The overlap lattice Dirac operator and dynamical fermions

    Get PDF
    I show how to avoid a two level nested conjugate gradient procedure in the context of Hybrid Monte Carlo with the overlap fermionic action. The resulting procedure is quite similar to Hybrid Monte Carlo with domain wall fermions, but is more flexible and therefore has some potential worth exploring.Comment: Further expanded version. 12 pages, plain Te

    On the period of the coherent structure in boundary layers at large Reynolds numbers

    Get PDF
    The period of the large coherent structure in a subsonic, compressible, turbulent boundary layer was determined using the autocorrelation of the velocity and pressure fluctuations for Reynolds numbers between 5,000 and 35,000. In low Reynolds number flows the overall correlation period scaled with the outer variables - namely, the free stream velocity and the boundary layer thickness

    Domain-wall fermions with U(1)U(1) dynamical gauge fields

    Get PDF
    We have carried out a numerical simulation of a domain-wall model in (2+1)(2+1)-dimensions, in the presence of a dynamical gauge field only in an extra dimension, corresponding to the weak coupling limit of a ( 2-dimensional ) physical gauge coupling. Using a quenched approximation we have investigated this model at βs(=1/gs2)=\beta_{s} ( = 1 / g^{2}_{s} ) = 0.5 ( ``symmetric'' phase), 1.0, and 5.0 (``broken'' phase), where gsg_s is the gauge coupling constant of the extra dimension. We have found that there exists a critical value of a domain-wall mass m0cm_{0}^{c} which separates a region with a fermionic zero mode on the domain-wall from the one without it, in both symmetric and broken phases. This result suggests that the domain-wall method may work for the construction of lattice chiral gauge theories.Comment: 27 pages (11 figures), latex (epsf style-file needed
    corecore