1,724 research outputs found

    The Origin of Black Hole Entropy in String Theory

    Get PDF
    I review some recent work in which the quantum states of string theory which are associated with certain black holes have been identified and counted. For large black holes, the number of states turns out to be precisely the exponential of the Bekenstein-Hawking entropy. This provides a statistical origin for black hole thermodynamics in the context of a potential quantum theory of gravity.Comment: 18 pages (To appear in the proceedings of the Pacific Conference on Gravitation and Cosmology, Seoul, Korea, February 1-6, 1996.

    Disruption of a Proto-Planetary Disk by the Black Hole at the Milky Way Centre

    Full text link
    Recently, an ionized cloud of gas was discovered plunging toward the supermassive black hole, SgrA*, at the centre of the Milky Way. The cloud is being tidally disrupted along its path to closest approach at ~3100 Schwarzschild radii from the black hole. Here, we show that the observed properties of this cloud of gas can naturally be produced by a proto-planetary disk surrounding a low-mass star, which was scattered from the observed ring of young stars orbiting SgrA*. As the young star approaches the black hole, its disk experiences both photo-evaporation and tidal disruption, producing a cloud. Our model implies that planets form in the Galactic centre, and that tidal debris from proto-planetary disks can flag low mass stars which are otherwise too faint to be detected.Comment: Accepted to Nature Communications; new Figure 4b provides predicted Br-gamma emission as a function of tim

    Testing the consistency of dust laws in SN Ia host galaxies: a BayeSN examination of Foundation DR1

    Get PDF
    Abstract We apply BayeSN, our new hierarchical Bayesian model for the SEDs of Type Ia supernovae (SNe Ia), to analyse the griz light curves of 157 nearby SNe Ia (0.015 &amp;lt; z &amp;lt; 0.08) from the public Foundation DR1 dataset. We train a new version of BayeSN, continuous from 0.35–0.95 μm, which we use to model the properties of SNe Ia in the rest-frame z-band, study the properties of dust in their host galaxies, and construct a Hubble diagram of SN Ia distances determined from full griz light curves. Our griz Hubble diagram has a low total RMS of 0.13 mag using BayeSN, compared to 0.16 mag using SALT2. Additionally, we test the consistency of the dust law RV between low- and high-mass host galaxies by using our model to fit the full time- and wavelength-dependent SEDs of SNe Ia up to moderate reddening (peak apparent B − V ≲ 0.3). Splitting the population at the median host mass, we find RV = 2.84 ± 0.31 in low-mass hosts, and RV = 2.58 ± 0.23 in high-mass hosts, both consistent with the global value of RV = 2.61 ± 0.21 that we estimate for the full sample. For all choices of mass split we consider, RV is consistent across the step within ≲ 1.2σ. Modelling population distributions of dust laws in low- and high-mass hosts, we find that both subsamples are highly consistent with the full sample’s population mean μ(RV) = 2.70 ± 0.25 with a 95 per cent upper bound on the population σ(RV) &amp;lt; 0.61. The RV population means are consistent within ≲ 1.2σ. We find that simultaneous fitting of host-mass-dependent dust properties within our hierarchical model does not account for the conventional mass step.</jats:p

    Radio pulsar populations

    Full text link
    The goal of this article is to summarize the current state of play in the field of radio pulsar statistics. Simply put, from the observed sample of objects from a variety of surveys with different telescopes, we wish to infer the properties of the underlying sample and to connect these with other astrophysical populations (for example supernova remnants or X-ray binaries). The main problem we need to tackle is the fact that, like many areas of science, the observed populations are often heavily biased by a variety of selection effects. After a review of the main effects relevant to radio pulsars, I discuss techniques to correct for them and summarize some of the most recent results. Perhaps the main point I would like to make in this article is that current models to describe the population are far from complete and often suffer from strong covariances between input parameters. That said, there are a number of very interesting conclusions that can be made concerning the evolution of neutron stars based on current data. While the focus of this review will be on the population of isolated Galactic pulsars, I will also briefly comment on millisecond and binary pulsars as well as the pulsar content of globular clusters and the Magellanic Clouds.Comment: 16 pages, 6 figures, to appear in Proceedings of ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain, 2010 April 12-16 (Springer

    Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models.

    Get PDF
    BACKGROUND: Current ablation therapy for atrial fibrillation is suboptimal, and long-term response is challenging to predict. Clinical trials identify bedside properties that provide only modest prediction of long-term response in populations, while patient-specific models in small cohorts primarily explain acute response to ablation. We aimed to predict long-term atrial fibrillation recurrence after ablation in large cohorts, by using machine learning to complement biophysical simulations by encoding more interindividual variability. METHODS: Patient-specific models were constructed for 100 atrial fibrillation patients (43 paroxysmal, 41 persistent, and 16 long-standing persistent), undergoing first ablation. Patients were followed for 1 year using ambulatory ECG monitoring. Each patient-specific biophysical model combined differing fibrosis patterns, fiber orientation maps, electrical properties, and ablation patterns to capture uncertainty in atrial properties and to test the ability of the tissue to sustain fibrillation. These simulation stress tests of different model variants were postprocessed to calculate atrial fibrillation simulation metrics. Machine learning classifiers were trained to predict atrial fibrillation recurrence using features from the patient history, imaging, and atrial fibrillation simulation metrics. RESULTS: We performed 1100 atrial fibrillation ablation simulations across 100 patient-specific models. Models based on simulation stress tests alone showed a maximum accuracy of 0.63 for predicting long-term fibrillation recurrence. Classifiers trained to history, imaging, and simulation stress tests (average 10-fold cross-validation area under the curve, 0.85±0.09; recall, 0.80±0.13; precision, 0.74±0.13) outperformed those trained to history and imaging (area under the curve, 0.66±0.17) or history alone (area under the curve, 0.61±0.14). CONCLUSION: A novel computational pipeline accurately predicted long-term atrial fibrillation recurrence in individual patients by combining outcome data with patient-specific acute simulation response. This technique could help to personalize selection for atrial fibrillation ablation

    Electrochemical Oxidative Fluorination of an Oxide Perovskite

    Get PDF
    We report on the electrochemical fluorination of the A-site vacant perovskite ReO3 using high-temperature solid-state cells as well as room-temperature liquid electrolytes. Using galvanostatic oxidation and electrochemical impedance spectroscopy, we find that ReO3 can be oxidized by approximately 0.5 equiv of electrons when in contact with fluoride-rich electrolytes. Results from our density functional theory calculations clearly rule out the most intuitive mechanism for charge compensation, whereby F-ions would simply insert onto the A-site of the perovskite structure. Operando X-ray diffraction, neutron total scattering measurements, X-ray spectroscopy, and solid-state 19F NMR with magic-angle spinning were, therefore, used to explore the mechanism by which fluoride ions react with the ReO3 electrode during oxidation. Taken together, our results indicate that a complex structural transformation occurs following fluorination to stabilize the resulting material. While we find that this process of fluorinating ReO3 appears to be only partially reversible, this work demonstrates a practical electrolyte and cell design that can be used to evaluate the mobility of small anions like fluoride that is robust at room temperature and opens new opportunities for exploring the electrochemical fluorination of many new materials

    Associations Between Methylation of Paternally Expressed Gene 3 (PEG3), Cervical Intraepithelial Neoplasia and Invasive Cervical Cancer.

    Get PDF
    Cytology-based screening for invasive cervical cancer (ICC) lacks sensitivity and specificity to discriminate between cervical intraepithelial neoplasia (CIN) likely to persist or progress from cases likely to resolve. Genome-wide approaches have been used to identify DNA methylation marks associated with CIN persistence or progression. However, associations between DNA methylation marks and CIN or ICC remain weak and inconsistent. Between 2008-2009, we conducted a hospital-based, case-control study among 213 Tanzania women with CIN 1/2/3 or ICC. We collected questionnaire data, biopsies, peripheral blood, cervical scrapes, Human papillomavirus (HPV) and HIV-1 infection status. We assessed PEG3 methylation status by bisulfite pyrosequencing. Multinomial logistic regression was used to estimate odds ratios (OR) and confidence intervals (CI 95%) for associations between PEG3 methylation status and CIN or ICC. After adjusting for age, gravidity, hormonal contraceptive use and HPV infection, a 5% increase in PEG3 DNA methylation was associated with increased risk for ICC (OR = 1.6; 95% CI 1.2-2.1). HPV infection was associated with a higher risk of CIN1-3 (OR = 15.7; 95% CI 5.7-48.6) and ICC (OR = 29.5, 95% CI 6.3-38.4). Infection with high risk HPV was correlated with mean PEG3 differentially methylated regions (DMRs) methylation (r = 0.34 p<0.0001), while the correlation with low risk HPV infection was weaker (r = 0.16 p = 0.047). Although small sample size limits inference, these data support that PEG3 methylation status has potential as a molecular target for inclusion in CIN screening to improve prediction of progression. Impact statement: We present the first evidence that aberrant methylation of the PEG3 DMR is an important co-factor in the development of Invasive cervical carcinoma (ICC), especially among women infected with high risk HPV. Our results show that a five percent increase in DNA methylation of PEG3 is associated with a 1.6-fold increase ICC risk. Suggesting PEG3 methylation status may be useful as a molecular marker for CIN screening to improve prediction of cases likely to progress

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Migration of superior vena cava stent

    Get PDF
    There has been a recent increase in the use of endovascular prostheses resulting in complex surgical and interventional complications not previously recognised. We report a case of Superior vena cava stenosis treated with a wallstent which migrated to the right atrium, necessitating a combined radiological and surgical approach to retrieve it
    • …
    corecore