11 research outputs found

    Estrategias de mejora en el diagnóstico del cáncer de mama por imagen de resonancia magnética: Avances en la secuencia potenciada en difusión

    Get PDF
    Desde la introducción de la imagen eco-planar para la obtención de la imagen potenciada en difusión (IPD), esta secuencia se utiliza cada vez más en la práctica clínica para la detección y caracterización de las lesiones mamarias. La IPD eco-planar de disparo único carece de una alta resolución espacial y es sensible al movimiento y a la falta de homogeneidad del campo magnético lo que puede generar artefactos en la imagen que a menudo dificultan una adecuada delimitación de las lesiones, en especial aquellas de menor tamaño. Las secuencias de difusión eco-planares de disparo múltiple ofrecen una mayor resolución espacial, pero son susceptibles a errores de fase inducidos por el movimiento, ya que cada disparo individual puede tener una dirección de codificación diferente. Esto produce artefactos tipo fantasma, registro erróneo de pixeles y una baja resolución de imagen con pobre contraste de difusión en las imágenes generadas. Además, los valores del coeficiente de difusión aparente (CDA) pueden verse alterados arrojando medidas inexactas que pueden afectar al diagnóstico. Una de las técnicas más prometedoras para corregir los errores de fase inducidos por el movimiento es la imagen potenciada en difusión decodificación de sensibilidad multiplexada (IPDCSM). Esta técnica utiliza el método de imagen paralela llamado de codificación de sensibilidad (SENSE por sus siglas en inglés) multiplexado logrando una mejor relación señal ruido(RSR). La IPDCSM reduce los artefactos y las distorsiones geométricas sin necesidad de ecos de navegación o modificaciones en la secuencia de pulsos. Esto genera imágenes de alta resolución con tiempos de adquisición cortos que permiten su aplicabilidad clínica. Este trabajo constituye la primera experiencia de esta secuencia aplicada a la imagen mamaria..

    Automated breast ultrasound for the detection of breast lesions: Comparison with hand-held ultrasound

    No full text
    Objetivos: Comparar la ecografía convencional frente a la ecografía automática de mama (ABUS) y la mamografía con tomosíntesis aislada en la detección y el diagnóstico de lesiones mamarias. Sujetos y métodos: Se incluyeron 155 mujeres sintomáticas y asintomáticas con mamas densas. Todas se realizaron mamografía y seguidamente ecografía manual y ABUS, que fueron interpretadas por 2 radiólogos diferentes. Los estudios fueron categorizados según el Breast Imaging Reporting and Data System (BI-RADS). Resultados: El índice kappa de concordancia fue de 0,83, p < 0,05. Los 5 carcinomas encontrados fueron diagnosticados por ambas técnicas de imagen de ultrasonidos, siendo en 2 de ellos la mamografía normal. ABUS detectó 2 lesiones benignas no vistas con la ecografía manual. Conclusión: ABUS demostró alta correlación con la ecografía manual detectando más lesiones benignas. El diagnóstico de las malignas fue equivalente con ambas técnicas, que fueron superiores a la mamografía de forma aislada. ABUS podría sustituir a la ecografía manual para complementar a la mamografía en la detección de cáncer de mama en mujeres con mama densa.Objectives: To compare automated breast ultrasound (ABUS) with hand-held ultrasound (HHUS) and tomosynthesis mammography in the detection and characterisation of breast lesions. Subjects and methods: A total of 155 symptomatic and asymptomatic women with dense breasts underwent tomosynthesis followed by ABUS and HHUS. The studies were read and graded by two different radiologists according to the Breast Imaging Reporting and Data System (BI-RADS). Results: The kappa index of agreement was 0.83, p < 0.05. All of the 5 carcinomas found were diagnosed by ABUS and HHUS. Tomosynthesis was normal in 2 out of 5 cases. ABUS identified 2 benign lesions not detected with HHUS. Conclusion: This study found a high correlation between ABUS and HHUS. More benign lesions were identified by ABUS while malignant lesions were detected equally by both techniques. ABUS and HHUS were superior to tomosynthesis in the detection of lesions. ABUS could replace HHUS, complementing mammography in the detection of lesions in women with dense breasts.Sin financiaciónNo data JCR 20180.120 SJR (2018) Q4, 319/381 Oncology, 287/341 Radiology, Nuclear Medicine and ImagingNo data IDR 2018UE

    Multidimensional diffusion magnetic resonance imaging for characterization of tissue microstructure in breast cancer patients : A prospective pilot study

    No full text
    Diffusion-weighted imaging is a non-invasive functional imaging modality for breast tumor characterization through apparent diffusion coefficients. Yet, it has so far been unable to intuitively inform on tissue microstructure. In this IRB-approved prospective study, we applied novel multidimensional diffusion (MDD) encoding across 16 patients with suspected breast cancer to evaluate its potential for tissue characterization in the clinical setting. Data acquired via custom MDD sequences was processed using an algorithm estimating non-parametric diffusion tensor distributions. The statistical descriptors of these distributions allow us to quantify tissue composition in terms of metrics informing on cell densities, shapes, and orientations. Additionally, signal fractions from specific cell types, such as elongated cells (bin1), isotropic cells (bin2), and free water (bin3), were teased apart. Histogram analysis in cancers and healthy breast tissue showed that cancers exhibited lower mean values of “size” (1.43 ± 0.54 × 10−3 mm2/s) and higher mean values of “shape” (0.47 ± 0.15) corresponding to bin1, while FGT (fibroglandular breast tissue) presented higher mean values of “size” (2.33 ± 0.22 × 10−3 mm2/s) and lower mean values of “shape” (0.27 ± 0.11) corresponding to bin3 (p < 0.001). Invasive carcinomas showed significant differences in mean signal fractions from bin1 (0.64 ± 0.13 vs. 0.4 ± 0.25) and bin3 (0.18 ± 0.08 vs. 0.42 ± 0.21) compared to ductal carcinomas in situ (DCIS) and invasive carcinomas with associated DCIS (p = 0.03). MDD enabled qualitative and quantitative evaluation of the composition of breast cancers and healthy glands

    Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis.

    No full text
    The purpose of this multicenter retrospective study was to evaluate radiomics analysis coupled with machine learning (ML) of dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) radiomics models separately and combined as multiparametric MRI for improved breast cancer detection. Consecutive patients (Memorial Sloan Kettering Cancer Center, January 2018-March 2020; Medical University Vienna, from January 2011-August 2014) with a suspicious enhancing breast tumor on breast MRI categorized as BI-RADS 4 and who subsequently underwent image-guided biopsy were included. In 93 patients (mean age: 49 years ± 12 years; 100% women), there were 104 lesions (mean size: 22.8 mm; range: 7-99 mm), 46 malignant and 58 benign. Radiomics features were calculated. Subsequently, the five most significant features were fitted into multivariable modeling to produce a robust ML model for discriminating between benign and malignant lesions. A medium Gaussian support vector machine (SVM) model with five-fold cross validation was developed for each modality. A model based on DWI-extracted features achieved an AUC of 0.79 (95% CI: 0.70-0.88), whereas a model based on DCE-extracted features yielded an AUC of 0.83 (95% CI: 0.75-0.91). A multiparametric radiomics model combining DCE- and DWI-extracted features showed the best AUC (0.85; 95% CI: 0.77-0.92) and diagnostic accuracy (81.7%; 95% CI: 73.0-88.6). In conclusion, radiomics analysis coupled with ML of multiparametric MRI allows an improved evaluation of suspicious enhancing breast tumors recommended for biopsy on clinical breast MRI, facilitating accurate breast cancer diagnosis while reducing unnecessary benign breast biopsies

    Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists&rsquo; Performance

    No full text
    This multicenter retrospective study compared the performance of radiomics analysis coupled with machine learning (ML) with that of radiologists for the classification of breast tumors. A total of 93 consecutive women (mean age: 49 &plusmn; 12 years) with 104 histopathologically verified enhancing lesions (mean size: 22.8 &plusmn; 15.1 mm), classified as suspicious on multiparametric breast MRIs were included. Two experienced breast radiologists assessed all of the lesions, assigning a Breast Imaging Reporting and Database System (BI-RADS) suspicion category, providing a diffusion-weighted imaging (DWI) score based on lesion signal intensity, and determining the apparent diffusion coefficient (ADC). Ten predictive models for breast lesion discrimination were generated using radiomic features extracted from the multiparametric MRI. The area under the receiver operating curve (AUC) and the accuracy were compared using McNemar&rsquo;s test. Multiparametric radiomics with DWI score and BI-RADS (accuracy = 88.5%; AUC = 0.93) and multiparametric radiomics with ADC values and BI-RADS (accuracy= 88.5%; AUC = 0.96) models showed significant improvements in diagnostic accuracy compared to the multiparametric radiomics (DWI + DCE data) model (p = 0.01 and p = 0.02, respectively), but performed similarly compared to the multiparametric assessment by radiologists (accuracy = 85.6%; AUC = 0.03; p = 0.39). In conclusion, radiomics analysis coupled with the ML of multiparametric MRI could assist in breast lesion discrimination, especially for less experienced readers of breast MRIs

    Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans.

    No full text
    PURPOSE: To develop a deep network architecture that would achieve fully automated radiologist-level segmentation of cancers at breast MRI. MATERIALS AND METHODS: In this retrospective study, 38 229 examinations (composed of 64 063 individual breast scans from 14 475 patients) were performed in female patients (age range, 12-94 years; mean age, 52 years ± 10 [standard deviation]) who presented between 2002 and 2014 at a single clinical site. A total of 2555 breast cancers were selected that had been segmented on two-dimensional (2D) images by radiologists, as well as 60 108 benign breasts that served as examples of noncancerous tissue; all these were used for model training. For testing, an additional 250 breast cancers were segmented independently on 2D images by four radiologists. Authors selected among several three-dimensional (3D) deep convolutional neural network architectures, input modalities, and harmonization methods. The outcome measure was the Dice score for 2D segmentation, which was compared between the network and radiologists by using the Wilcoxon signed rank test and the two one-sided test procedure. RESULTS: The highest-performing network on the training set was a 3D U-Net with dynamic contrast-enhanced MRI as input and with intensity normalized for each examination. In the test set, the median Dice score of this network was 0.77 (interquartile range, 0.26). The performance of the network was equivalent to that of the radiologists (two one-sided test procedures with radiologist performance of 0.69-0.84 as equivalence bounds, P &lt; .001 for both; n = 250). CONCLUSION: When trained on a sufficiently large dataset, the developed 3D U-Net performed as well as fellowship-trained radiologists in detailed 2D segmentation of breast cancers at routine clinical MRI.Keywords: MRI, Breast, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning AlgorithmsPublished under a CC BY 4.0 license. Supplemental material is available for this article
    corecore