333 research outputs found

    Regulation of Tyrosine Kinase Signaling by Cbl in Hematopoietic Stem Cells

    Get PDF

    The role of Sox9 in mouse mammary gland development and maintenance of mammary stem and luminal progenitor cells.

    Get PDF
    BackgroundIdentification and characterization of molecular controls that regulate mammary stem and progenitor cell homeostasis are critical to our understanding of normal mammary gland development and its pathology.ResultsWe demonstrate that conditional knockout of Sox9 in the mouse mammary gland results in impaired postnatal development. In short-term lineage tracing in the postnatal mouse mammary gland using Sox9-CreER driven reporters, Sox9 marked primarily the luminal progenitors and bipotent stem/progenitor cells within the basal mammary epithelial compartment. In contrast, long-term lineage tracing studies demonstrate that Sox9+ precursors gave rise to both luminal and myoepithelial cell lineages. Finally, fate mapping of Sox9 deleted cells demonstrates that Sox9 is essential for luminal, but not myoepithelial, lineage commitment and proliferation.ConclusionsThese studies identify Sox9 as a key regulator of mammary gland development and stem/progenitor maintenance

    Role of mammalian Ecdysoneless in cell cycle regulation.

    Get PDF
    The Ecdysoneless (Ecd) protein is required for cell-autonomous roles in development and oogenesis in Drosophila, but the function of its evolutionarily conserved mammalian orthologs is not clear. To study the cellular function of Ecd in mammalian cells, we generated Ecd(lox/lox) mouse embryonic fibroblast cells from Ecd floxed mouse embryos. Cre-mediated deletion of Ecd in Ecd(lox/lox) mouse embryonic fibroblasts led to a proliferative block due to a delay in G(1)-S cell cycle progression; this defect was reversed by the introduction of human Ecd. Loss of Ecd led to marked down-regulation of E2F target gene expression. Furthermore, Ecd directly bound to Rb at the pocket domain and competed with E2F for binding to hypophosphorylated Rb. Our results demonstrate that mammalian Ecd plays a role in cell cycle progression via the Rb-E2F pathway

    Act1, a Negative Regulator in CD40- and BAFF-Mediated B Cell Survival

    Get PDF
    AbstractTNF receptor (TNFR) superfamily members, CD40, and BAFFR play critical roles in B cell survival and differentiation. Genetic deficiency in a novel adaptor molecule, Act1, for CD40 and BAFF results in a dramatic increase in peripheral B cells, which culminates in lymphadenopathy and splenomegaly, hypergammaglobulinemia, and autoantibodies. While the B cell-specific Act1 knockout mice displayed a similar phenotype with less severity, the pathology of the Act1-deficient mice was mostly blocked in CD40-Act1 and BAFF-Act1 double knockout mice. CD40- and BAFF-mediated survival is significantly increased in Act1-deficent B cells, with stronger IκB phosphorylation, processing of NF-κB2 (p100/p52), and activation of JNK, ERK, and p38 pathways, indicating that Act1 negatively regulates CD40- and BAFF-mediated signaling events. These findings demonstrate that Act1 plays an important role in the homeostasis of B cells by attenuating CD40 and BAFFR signaling

    Cbl Enforces Vav1 Dependence and a Restricted Pathway of T Cell Development

    Get PDF
    Extensive studies of pre-TCR- and TCR-dependent signaling have led to characterization of a pathway deemed essential for efficient T cell development, and comprised of a cascade of sequential events involving phosphorylation of Lck and ZAP-70, followed by phosphorylation of LAT and SLP-76, and subsequent additional downstream events. Of interest, however, reports from our lab as well as others have indicated that the requirements for ZAP-70, LAT, and SLP-76 are partially reversed by inactivation of c-Cbl (Cbl), an E3 ubiquitin ligase that targets multiple molecules for ubiquitination and degradation. Analysis of signaling events in these Cbl knockout models, including the recently reported analysis of SLP-76 transgenes defective in interaction with Vav1, suggested that activation of Vav1 might be a critical event in alternative pathways of T cell development. To extend the analysis of signaling requirements for thymic development, we have therefore assessed the effect of Cbl inactivation on the T cell developmental defects that occur in Vav1-deficient mice. The defects in Vav1-deficient thymic development, including a marked defect in DN3-DN4 transition, were completely reversed by Cbl inactivation, accompanied by enhanced phosphorylation of PLC-γ1 and ERKs in response to pre-TCR/TCR cross-linking of Vav1-/-Cbl-/- DP thymocytes. Taken together, these results suggest a substantially modified paradigm for pre-TCR/TCR signaling and T cell development. The observed consensus pathways of T cell development, including requirements for ZAP-70, LAT, SLP-76, and Vav1, appear to reflect the restriction by Cbl of an otherwise much broader set of molecular pathways capable of mediating T cell development

    Mammalian alteration/deficiency in activation 3 (Ada3) is essential for embryonic development and cell cycle progression.

    Get PDF
    Ada3 protein is an essential component of histone acetyl transferase containing coactivator complexes conserved from yeast to human. We show here that germline deletion of Ada3 in mouse is embryonic lethal, and adenovirus-Cre mediated conditional deletion of Ada3 in Ada3(FL/FL) mouse embryonic fibroblasts leads to a severe proliferation defect which was rescued by ectopic expression of human Ada3. A delay in G(1) to S phase of cell cycle was also seen that was due to accumulation of Cdk inhibitor p27 which was an indirect effect of c-myc gene transcription control by Ada3. We further showed that this defect could be partially reverted by knocking down p27. Additionally, drastic changes in global histone acetylation and changes in global gene expression were observed in microarray analyses upon loss of Ada3. Lastly, formation of abnormal nuclei, mitotic defects and delay in G(2)/M to G(1) transition was seen in Ada3 deleted cells. Taken together, we provide evidence for a critical role of Ada3 in embryogenesis and cell cycle progression as an essential component of HAT complex

    The role of Sox9 in mouse mammary gland development and maintenance of mammary stem and luminal progenitor cells

    Get PDF
    BACKGROUND: Identification and characterization of molecular controls that regulate mammary stem and progenitor cell homeostasis are critical to our understanding of normal mammary gland development and its pathology. RESULTS: We demonstrate that conditional knockout of Sox9 in the mouse mammary gland results in impaired postnatal development. In short-term lineage tracing in the postnatal mouse mammary gland using Sox9-CreER driven reporters, Sox9 marked primarily the luminal progenitors and bipotent stem/progenitor cells within the basal mammary epithelial compartment. In contrast, long-term lineage tracing studies demonstrate that Sox9+ precursors gave rise to both luminal and myoepithelial cell lineages. Finally, fate mapping of Sox9 deleted cells demonstrates that Sox9 is essential for luminal, but not myoepithelial, lineage commitment and proliferation. CONCLUSIONS: These studies identify Sox9 as a key regulator of mammary gland development and stem/progenitor maintenance

    Conserved piRNA expression from a distinct set of piRNA cluster loci in eutherian mammals

    Get PDF
    The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction.Gung-wei Chirn, Reazur Rahman, Yuliya A. Sytnikova, Jessica A. Matts, Mei Zeng ... Benjamin T. Kile ... et al
    • …
    corecore