4,869 research outputs found
R&D results on a CsI-TTGEM based photodetector
The very high momentum particle identification detector proposed for the
ALICE upgrade is a focusing RICH using a C4F10 gaseous radiator. For the
detection of Cherenkov photons, one of the options currently under
investigation is to use a CsI coated Triple-Thick-GEM (CsI-TTGEM) with metallic
or resistive electrodes. We will present results from the laboratory studies as
well as preliminary results of beam tests of a RICH detector prototype
consisting of a CaF2 radiator coupled to a 10x10 cm2 CsI-TTGEM equipped with a
pad readout and GASSIPLEX-based front-end electronics. With such a prototype
the detection of Cherenkov photons simultaneously with minimum ionizing
particles has been achieved for the first time in a stable operation mode
Thermodynamics of 2D string theory
We calculate the free energy, energy and entropy in the matrix quantum
mechanical formulation of 2D string theory in a background strongly perturbed
by tachyons with the imaginary Minkowskian momentum
(``Sine-Liouville'' theory). The system shows a thermodynamical behaviour
corresponding to the temperature . We show that the
microscopically calculated energy of the system satisfies the usual
thermodynamical relations and leads to a non-zero entropy.Comment: 13 pages, lanlmac; typos correcte
Chern-Simons Field Theories with Non-semisimple Gauge Group of Symmetry
Subject of this work is a class of Chern-Simons field theories with
non-semisimple gauge group, which may well be considered as the most
straightforward generalization of an Abelian Chern-Simons field theory. As a
matter of fact these theories, which are characterized by a non-semisimple
group of gauge symmetry, have cubic interactions like those of non-abelian
Chern-Simons field theories, but are free from radiative corrections. Moreover,
at the tree level in the perturbative expansion,there are only two connected
tree diagrams, corresponding to the propagator and to the three vertex
originating from the cubic interaction terms. For such theories it is derived
here a set of BRST invariant observables, which lead to metric independent
amplitudes. The vacuum expectation values of these observables can be computed
exactly. From their expressions it is possible to isolate the Gauss linking
number and an invariant of the Milnor type, which describes the topological
relations among three or more closed curves.Comment: 16 pages, 1 figure, plain LaTeX + psfig.st
Two-dimensional black holes in accelerated frames: quantum aspects
By considering charged black hole solutions of a one parameter family of two
dimensional dilaton gravity theories, one finds the existence of quantum
mechanically stable gravitational kinks with a simple mass to charge relation.
Unlike their Einsteinian counterpart (i.e. extreme Reissner-Nordstr\"om), these
have nonvanishing horizon surface gravity.Comment: 18 pages, harvmac, 2 figure
Time-Dependent Open String Solutions in 2+1 Dimensional Gravity
We find general, time-dependent solutions produced by open string sources
carrying no momentum flow in 2+1 dimensional gravity. The local Poincar\'e
group elements associated with these solutions and the coordinate
transformations that transform these solutions into Minkowski metric are
obtained. We also find the relation between these solutions and the planar wall
solutions in 3+1 dimensions.Comment: CU-TP-619, 18 pages. (minor changes
Progress in the development of a S RETGEM-based detector for an early forest fire warning system
In this paper we present a prototype of a Strip Resistive Thick GEM
photosensitive gaseous detector filled with Ne and ethylferrocene vapours at a
total pressure of 1 atm for an early forest fire detection system. Tests show
that it is one hundred times more sensitive than the best commercial
ultraviolet flame detectors and therefore, it is able to reliably detect a
flame of 1.5x1.5x1.5 m3 at a distance of about 1km. An additional and unique
feature of this detector is its imaging capability, which in combination with
other techniques, may significantly reduce false fire alarms when operating in
an automatic mode.
Preliminary results conducted with air filled photosensitive gaseous
detectors are also presented. The approach main advantages include both the
simplicity of manufacturing and affordability of construction materials such as
plastics and glues specifically reducing detector production cost. The
sensitivity of these air filled detectors at certain conditions may be as high
as those filled with Ne and EF. Long term test results of such sealed detectors
indicate a significant progress in this direction.
We believe that our detectors utilized in addition to other flame and smoke
sensors will exceptionally increase the sensitivity of forest fire detection
systems. Our future efforts will be focused on attempts to commercialize such
detectors utilizing our aforementioned findings.Comment: Presented at the International Conference on Micropattern gaseous
detectors, Crete, Greece, June 200
Monodromy Matrix in the PP-Wave Limit
We construct the monodromy matrix for a class of gauged WZWN models in the
plane wave limit and discuss various properties of such systems.Comment: 16 page
Exactly solvable models in 2D semiclassical dilaton gravity and extremal black holes
Previously known exactly solvable models of 2D semiclassical dilaton gravity
admit, in the general case, only non-extreme black holes. It is shown that
there exist exceptional degenerate cases, that can be obtained by some limiting
transitions from the general exact solution, which include, in particular,
extremal and ultraextremal black holes. We also analyze properties of extreme
black holes without demanding exact solvability and show that for such
solutions quantum backreaction forbids the existence of ultraextreme black
holes. The conditions,under which divergencies of quantum stresses in a free
falling frame can disappear, are found. We derive the closed equation with
respect to the metric as a function of the dilaton field that enables one,
choosing the form of the metric, to restore corresponding Lagrangian. It is
demonstrated that exactly solvable models, found earlier, can be extended to
include an electric charge only in two cases: either the dilaton-gravitation
coupling is proportional to the potential term, or the latter vanishes. The
second case leads to the effective potential with a negative amplitude and we
analyze, how this fact affects the structure of spacetime. We also discuss the
role of quantum backreaction in the relationship between extremal horizons and
the branch of solutions with a constant dilaton.Comment: 31 pages. In v.2 typo in Ref. [2] corrected, 4 references added.
Accepted in Class. Quant. Gra
Solutions of multigravity theories and discretized brane worlds
We determine solutions to 5D Einstein gravity with a discrete fifth
dimension. The properties of the solutions depend on the discretization scheme
we use and some of them have no continuum counterpart. In particular, we find
that the neglect of the lapse field (along the discretized direction) gives
rise to Randall-Sundrum type metric with a negative tension brane. However, no
brane source is required. We show that this result is robust under changes in
the discretization scheme. The inclusion of the lapse field gives rise to
solutions whose continuum limit is gauge fixed by the discretization scheme. We
find however one particular scheme which leads to an undetermined lapse
reflecting the reparametrization invariance of the continuum theory. We also
find other solutions, with no continuum counterpart with changes in the metric
signature or avoidance of singularity. We show that the models allow a
continuous mass spectrum for the gravitons with an effective 4D interaction at
small scales. We also discuss some cosmological solutions.Comment: 19 page
- âŠ