5,007 research outputs found
Form factor expansion of the row and diagonal correlation functions of the two dimensional Ising model
We derive and prove exponential and form factor expansions of the row
correlation function and the diagonal correlation function of the two
dimensional Ising model
A WZW model based on a non-semi-simple group
We present a conformal field theory which desribes a homogeneous four
dimensional Lorentz-signature space-time. The model is an ungauged WZW model
based on a central extension of the Poincar\'e algebra. The central charge of
this theory is exactly four, just like four dimensional Minkowski space. The
model can be interpreted as a four dimensional monochromatic plane wave. As
there are three commuting isometries, other interesting geometries are expected
to emerge via duality.Comment: 8 pages, phyzzx, IASSNS-HEP-93/61 Texable versio
Headache in history and the arts. The artemicranica project
The project ââARTeMICRANICAââ originates from the exhibition of Giorgio De Chirico âARTeMICRANIA. Opere e parole tra mal di testa e metafisica.ââ held in Rome in September 2003 at the XI Congress of the International Headache Society / IHC 2003
Two-dimensional black holes in accelerated frames: quantum aspects
By considering charged black hole solutions of a one parameter family of two
dimensional dilaton gravity theories, one finds the existence of quantum
mechanically stable gravitational kinks with a simple mass to charge relation.
Unlike their Einsteinian counterpart (i.e. extreme Reissner-Nordstr\"om), these
have nonvanishing horizon surface gravity.Comment: 18 pages, harvmac, 2 figure
Exactly solvable models in 2D semiclassical dilaton gravity and extremal black holes
Previously known exactly solvable models of 2D semiclassical dilaton gravity
admit, in the general case, only non-extreme black holes. It is shown that
there exist exceptional degenerate cases, that can be obtained by some limiting
transitions from the general exact solution, which include, in particular,
extremal and ultraextremal black holes. We also analyze properties of extreme
black holes without demanding exact solvability and show that for such
solutions quantum backreaction forbids the existence of ultraextreme black
holes. The conditions,under which divergencies of quantum stresses in a free
falling frame can disappear, are found. We derive the closed equation with
respect to the metric as a function of the dilaton field that enables one,
choosing the form of the metric, to restore corresponding Lagrangian. It is
demonstrated that exactly solvable models, found earlier, can be extended to
include an electric charge only in two cases: either the dilaton-gravitation
coupling is proportional to the potential term, or the latter vanishes. The
second case leads to the effective potential with a negative amplitude and we
analyze, how this fact affects the structure of spacetime. We also discuss the
role of quantum backreaction in the relationship between extremal horizons and
the branch of solutions with a constant dilaton.Comment: 31 pages. In v.2 typo in Ref. [2] corrected, 4 references added.
Accepted in Class. Quant. Gra
Time-Dependent Open String Solutions in 2+1 Dimensional Gravity
We find general, time-dependent solutions produced by open string sources
carrying no momentum flow in 2+1 dimensional gravity. The local Poincar\'e
group elements associated with these solutions and the coordinate
transformations that transform these solutions into Minkowski metric are
obtained. We also find the relation between these solutions and the planar wall
solutions in 3+1 dimensions.Comment: CU-TP-619, 18 pages. (minor changes
The diagonal Ising susceptibility
We use the recently derived form factor expansions of the diagonal two-point
correlation function of the square Ising model to study the susceptibility for
a magnetic field applied only to one diagonal of the lattice, for the isotropic
Ising model.
We exactly evaluate the one and two particle contributions
and of the corresponding susceptibility, and obtain linear
differential equations for the three and four particle contributions, as well
as the five particle contribution , but only modulo a given
prime. We use these exact linear differential equations to show that, not only
the russian-doll structure, but also the direct sum structure on the linear
differential operators for the -particle contributions are
quite directly inherited from the direct sum structure on the form factors .
We show that the particle contributions have their
singularities at roots of unity. These singularities become dense on the unit
circle as .Comment: 18 page
Chern-Simons Field Theories with Non-semisimple Gauge Group of Symmetry
Subject of this work is a class of Chern-Simons field theories with
non-semisimple gauge group, which may well be considered as the most
straightforward generalization of an Abelian Chern-Simons field theory. As a
matter of fact these theories, which are characterized by a non-semisimple
group of gauge symmetry, have cubic interactions like those of non-abelian
Chern-Simons field theories, but are free from radiative corrections. Moreover,
at the tree level in the perturbative expansion,there are only two connected
tree diagrams, corresponding to the propagator and to the three vertex
originating from the cubic interaction terms. For such theories it is derived
here a set of BRST invariant observables, which lead to metric independent
amplitudes. The vacuum expectation values of these observables can be computed
exactly. From their expressions it is possible to isolate the Gauss linking
number and an invariant of the Milnor type, which describes the topological
relations among three or more closed curves.Comment: 16 pages, 1 figure, plain LaTeX + psfig.st
Do electroweak precision data and Higgs-mass constraints rule out a scalar bottom quark with mass of O(5 GeV)?
We investigate the phenomenological implications of a light scalar bottom
quark, with a mass of about the bottom quark mass, within the minimal
supersymmetric standard model. The study of such a scenario is of theoretical
interest, since, depending on their production and decay modes, light sbottoms
may have escaped experimental detection up to now and, in addition, may
naturally appear for large values of \tan\beta. In this article we show that
such a light sbottom cannot be ruled out by the constraints from the
electroweak precision data and the present bound on the lightest CP-even Higgs
boson mass at LEP. It is inferred that a light sbottom scenario requires in
general a relatively light scalar top quark whose mass is typically about the
top-quark mass. It is also shown that under these conditions the lightest
CP-even Higgs boson decays predominantly into scalar bottom quarks in most of
the parameter space and that its mass is restricted to m_h ~< 123 GeV.Comment: 7 pages, 2 figures, LateX. Discussion about fine tuning and
low-energy experiments enlarged. Version to appear in Phys. Rev. Let
- âŠ