5 research outputs found

    Nuclear survivin expression is a positive prognostic factor in taxane-platinum-treated ovarian cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivin is an inhibitor of apoptosis and a regulator of mitotic progression. TP53 protein is a negative transcriptional regulator of survivin. The aim of our study was to evaluate the clinical significance of survivin expression in advanced stages ovarian cancer with respect to the TP53 status.</p> <p>Methods</p> <p>Survivin and TP53 expression was evaluated immunohistochemically in 435 archival samples of ovarian carcinomas (244 patients were treated with platinum/cyclophosphamide-PC/PAC; 191-with taxane-platinum (TP) agents). Univariate and multivariate statistical analyses were performed in patients groups divided according to the administered chemotherapeutic regimen, and in subgroups with and without TP53 accumulation (TP53+ and TP53-, respectively).</p> <p>Results</p> <p>Nuclear and cytoplasmic survivin expression was observed in 92% and 74% of the carcinomas, respectively. In patients treated with TP, high nuclear survivin expression decreased the risk of disease recurrence and death, and increased the probability of high platinum sensitivity (p < 0.01), but only in the TP53(+) group, and not in the TP53(-) group.</p> <p>Conclusions</p> <p>It appears that TP53 status determines the clinical importance of nuclear survivin expression in taxane-platinum treated ovarian cancer patients.</p

    The SARS-CoV-2 spike protein binds and modulates estrogen receptors

    Full text link
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 as its primary infection mechanism. Interactions between S and endogenous proteins occur after infection but are not well understood. We profiled binding of S against >9000 human proteins and found an interaction between S and human estrogen receptor alpha (ER alpha). Using bioinformatics, supercomputing, and experimental assays, we identified a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 sub-unit. In cultured cells, S DNA transfection increased ER alpha cytoplasmic accumulation, and S treatment induced ER-dependent biological effects. Non-invasive imaging in SARS-CoV-2-infected hamsters localized lung pathology with increased ER alpha lung levels. Postmortem lung experiments from infected hamsters and humans confirmed an increase in cytoplasmic ER alpha and its colocalization with S in alveolar macrophages. These findings describe the discovery of a S-ER alpha interaction, imply a role for S as an NRC, and advance knowledge of SARS-CoV-2 biology and coronavirus disease 2019 pathology

    Exogenous vitamins K exert anti-inflammatory effects dissociated from their role as substrates for synthesis of endogenous MK-4 in murine macrophages cell line

    No full text
    Vitamins K exert a range of activities that extend far beyond coagulation and include anti-inflammatory effects, but the mechanisms involved in anti-inflammatory action remain unclear. In the present study, we showed that various forms of exogenous vitaminsā€”K(1), K(3), K(2) (MK-4, MK-5, MK-6 and MK-7)ā€”regulated a wide scope of inflammatory pathways in murine macrophages in vitro, including NOS-2, COX-2, cytokines and MMPs. Moreover, we demonstrated for the first time that macrophages are able to synthesise endogenous MK-4 on their own. Vitamins with shorter isoprenoid chainsā€”K(1), K(3) and MK-5ā€”exhibited stronger anti-inflammatory potential than vitamins with longer isoprenoid chains (MK-6 and MK-7) and simultaneously were preferably used as a substrate for MK-4 endogenous production. Most interesting, atorvastatin pretreatment inhibited endogenous MK-4 production but had no impact on the anti-inflammatory activity of vitamins K. In summary, our results demonstrate that macrophages are able to synthesise endogenous MK-4 using exogenous vitamins K, and statin inhibits this process. However, the anti-inflammatory effect of exogenous vitamins K was independent of endogenous MK-4 synthesis

    The SARS-CoV-2 spike protein binds and modulates estrogen receptors

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 (ACE2) at the cell surface, which constitutes the primary mechanism driving SARS-CoV-2 infection. Molecular interactions between the transduced S and endogenous proteins likely occur post-infection, but such interactions are not well understood. We used an unbiased primary screen to profile the binding of full-length S against >9,000 human proteins and found significant S-host protein interactions, including one between S and human estrogen receptor alpha (ERĪ±). After confirming this interaction in a secondary assay, we used bioinformatics, supercomputing, and experimental assays to identify a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit and an S-ERĪ± binding mode. In cultured cells, S DNA transfection increased ERĪ± cytoplasmic accumulation, and S treatment induced ER-dependent biological effects and ACE2 expression. Noninvasive multimodal PET/CT imaging in SARS-CoV-2-infected hamsters using [18F]fluoroestradiol (FES) localized lung pathology with increased ERĪ± lung levels. Postmortem experiments in lung tissues from SARS-CoV-2-infected hamsters and humans confirmed an increase in cytoplasmic ERĪ± expression and its colocalization with S protein in alveolar macrophages. These findings describe the discovery and characterization of a novel S-ERĪ± interaction, imply a role for S as an NRC, and are poised to advance knowledge of SARS-CoV-2 biology, COVID-19 pathology, and mechanisms of sex differences in the pathology of infectious disease
    corecore