44 research outputs found

    JunB regulates homeostasis and suppressive functions of effector regulatory T cells

    Get PDF
    Foxp3-expressing CD4(+) regulatory T (Treg) cells need to differentiate into effector Treg (eTreg) cells to maintain immune homeostasis. T-cell receptor (TCR)-dependent induction of the transcription factor IRF4 is essential for eTreg differentiation, but how IRF4 activity is regulated in Treg cells is still unclear. Here we show that the AP-1 transcription factor, JunB, is expressed in eTreg cells and promotes an IRF4-dependent transcription program. Mice lacking JunB in Treg cells develop multi-organ autoimmunity, concomitant with aberrant activation of T helper cells. JunB promotes expression of Treg effector molecules, such as ICOS and CTLA4, in BATF-dependent and BATF-independent manners, and is also required for homeostasis and suppressive functions of eTreg. Mechanistically, JunB facilitates the accumulation of IRF4 at a subset of IRF4 target sites, including those located near Icos and Ctla4. Thus, JunB is a critical regulator of IRF4-dependent Treg effector programs, highlighting important functions for AP-1 in Treg-mediated immune homeostasis

    Effects of HLA-DRB1 alleles on susceptibility and clinical manifestations in Japanese patients with adult onset Still’s disease

    Get PDF
    BackgroundHLA-DRB1 alleles are major determinants of genetic predisposition to rheumatic diseases. We assessed whether DRB1 alleles are associated with susceptibility to particular clinical features of adult onset Still’s disease (AOSD) in a Japanese population by determining the DRB1 allele distributions.MethodsDRB1 genotyping of 96 patients with AOSD and 1,026 healthy controls was performed. Genomic DNA samples from the AOSD patients were also genotyped for MEFV exons 1, 2, 3, and 10 by direct sequencing.ResultsIn Japanese patients with AOSD, we observed a predisposing association of DRB1*15:01 (p = 8.60 × 10−6, corrected p (Pc) = 0.0002, odds ratio (OR) = 3.04, 95% confidence interval (95% CI) = 1.91–4.84) and DR5 serological group (p = 0.0006, OR = 2.39, 95% CI = 1.49–3.83) and a protective association of DRB1*09:01 (p = 0.0004, Pc = 0.0110, OR = 0.34, 95% CI = 0.18–0.66) with AOSD, and amino acid residues 86 and 98 of the DRβ chain were protectively associated with AOSD. MEFV variants were identified in 49 patients with AOSD (56.3%). The predisposing effect of DR5 was confirmed only in patients with AOSD who had MEFV variants and not in those without MEFV variants. Additionally, DR5 in patients with AOSD are associated with macrophage activation syndrome (MAS) and steroid pulse therapy.ConclusionThe DRB1*15:01 and DR5 are both associated with AOSD susceptibility in Japanese subjects. A protective association between the DRB1*09:01 allele and AOSD was also observed in these patients. Our data also highlight the effects of DRB1 alleles in susceptibility to AOSD

    Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Get PDF
    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Integrative approach clarifies the distinct taxonomic account of gryloblattids endemic to Hokkaido, Japan, with a description of two new species (Insecta, Grylloblattodea)

    No full text
    Galloisiana yezoensis Asahina, 1961 was described on the basis of female specimens from the Ishikari Mountains, Hokkaido, Japan, and has been known as the only species of Grylloblattidae in Hokkaido. In preliminary research, several species closely related to G. yezoensis were collected from various sites in Hokkaido. In the present study, the taxonomic status of G. yezoensis and its relatives was reexamined through molecular and morphological analyses approaches. As a result, the phylogenetic tree of the COII region, and mitochondrial DNA, suggest that G. yezoensis and its relatives form a unique clade distinct from the Galloisiana clade. We therefore establish a new genus, Arctigalloisiana gen. nov., with two new species, A. poropnetopa sp. nov. and A. yubariensis sp. nov. The type species is Arctigalloisiana yezoensis comb. nov., and its male is described here for the first time
    corecore