47 research outputs found

    Poorer prognosis with ethylenediaminetetraacetic acid-dependent pseudothrombocytopenia: a single-center case-control study.

    Get PDF
    In ethylenediaminetetraacetic acid (EDTA)-dependent pseudothrombocytopenia (PTCP), automated platelet counts are lower than actual counts because of EDTA-induced aggregation. Factors contributing to the incidence of EDTA-PTCP are unknown, and no study has assessed the prognosis of EDTA-PTCP patients. This retrospective study assessed characteristics in EDTA-PTCP patients and matched controls to determine differences in prognosis. A retrospective case-control study was designed. From the University of Tokyo Hospital database, we identified patients diagnosed with EDTA-PTCP between 2009 and 2012, and performed 1:2 case:control matching for age and sex. A control group of sex- and age-matched patients was selected at random from the same database. We investigated differences in the frequency of complications, medication history, and blood transfusion history between the groups at the time of blood collection. Prognosis was evaluated using multivariate Cox regression analysis adjusting for age, sex, autoimmune disease, liver disease, and malignant tumor. We identified 104 EDTA-PTCP patients and 208 matched controls. The median age was 69.0 years (interquartile range: 54-76), with men comprising 51%. EDTA-PTCP patients had a higher frequency of malignant tumor and a lower frequency of hypertension and diabetes than controls. After adjustment for background factors, prognosis of EDTA-PTCP patients was significantly poorer than controls (hazard ratio, 11.8; 95% confidence intervals, 2.62-53.54). In conclusion, EDTA-PTCP patients had higher mortality, and EDTA-PTCP may need to be recognized as an indicator of worse prognosis

    Impact of a New Medical Record System for Emergency Departments Designed to Accelerate Clinical Documentation: A Crossover Study.

    Get PDF
    Recording information in emergency departments (EDs) constitutes a major obstacle to efficient treatment. A new electronic medical records (EMR) system focusing on clinical documentation was developed to accelerate patient flow. The aim of this study was to examine the impact of a new EMR system on ED length of stay and physician satisfaction.We integrated a new EMR system at a hospital already using a standard system. A crossover design was adopted whereby residents were randomized into 2 groups. Group A used the existing EMR system first, followed by the newly developed system, for 2 weeks each. Group B followed the opposite sequence. The time required to provide overall medical care, length of stay in ED, and degree of physician satisfaction were compared between the 2 EMR systems.The study involved 6 residents and 526 patients (277 assessed using the standard system and 249 assessed with the new system). Mean time for clinical documentation decreased from 133.7 ± 5.1 minutes to 107.5 ± 5.4 minutes with the new EMR system (P < 0.001). The time for overall medical care was significantly reduced in all patient groups except triage level 5 (nonurgent). The new EMR system significantly reduced the length of stay in ED for triage level 2 (emergency) patients (145.4 ± 13.6 minutes vs 184.3 ± 13.6 minutes for standard system; P = 0.047). As for the degree of physician satisfaction, there was a high degree of satisfaction in terms of the physical findings support system and the ability to capture images and enter negative findings.The new EMR system shortened the time for overall medical care and was associated with a high degree of resident satisfaction

    GADGET: A code for collisionless and gasdynamical cosmological simulations

    Full text link
    We describe the newly written code GADGET which is suitable both for cosmological simulations of structure formation and for the simulation of interacting galaxies. GADGET evolves self-gravitating collisionless fluids with the traditional N-body approach, and a collisional gas by smoothed particle hydrodynamics. Along with the serial version of the code, we discuss a parallel version that has been designed to run on massively parallel supercomputers with distributed memory. While both versions use a tree algorithm to compute gravitational forces, the serial version of GADGET can optionally employ the special-purpose hardware GRAPE instead of the tree. Periodic boundary conditions are supported by means of an Ewald summation technique. The code uses individual and adaptive timesteps for all particles, and it combines this with a scheme for dynamic tree updates. Due to its Lagrangian nature, GADGET thus allows a very large dynamic range to be bridged, both in space and time. So far, GADGET has been successfully used to run simulations with up to 7.5e7 particles, including cosmological studies of large-scale structure formation, high-resolution simulations of the formation of clusters of galaxies, as well as workstation-sized problems of interacting galaxies. In this study, we detail the numerical algorithms employed, and show various tests of the code. We publically release both the serial and the massively parallel version of the code.Comment: 32 pages, 14 figures, replaced to match published version in New Astronomy. For download of the code, see http://www.mpa-garching.mpg.de/gadget (new version 1.1 available

    Clustering of Lyman Break Galaxies at z=4 and 5 in The Subaru Deep Field: Luminosity Dependence of The Correlation Function Slope

    Full text link
    We explored the clustering properties of Lyman Break Galaxies (LBGs) at z=4 and 5 with an angular two-point correlation function on the basis of the very deep and wide Subaru Deep Field data. We found an apparent dependence of the correlation function slope on UV luminosity for LBGs at both z=4 and 5. More luminous LBGs have a steeper correlation function. To compare these observational results, we constructed numerical mock LBG catalogs based on a semianalytic model of hierarchical clustering combined with high-resolution N-body simulation, carefully mimicking the observational selection effects. The luminosity functions for LBGs predicted by this mock catalog were found to be almost consistent with the observation. Moreover, the overall correlation functions of LBGs were reproduced reasonably well. The observed dependence of the clustering on UV luminosity was not reproduced by the model, unless subsamples of distinct halo mass were considered. That is, LBGs belonging to more massive dark haloes had steeper and larger-amplitude correlation functions. With this model, we found that LBG multiplicity in massive dark halos amplifies the clustering strength at small scales, which steepens the slope of the correlation function. The hierarchical clustering model could therefore be reconciled with the observed luminosity-dependence of the angular correlation function, if there is a tight correlation between UV luminosity and halo mass. Our finding that the slope of the correlation function depends on luminosity could be an indication that massive dark halos hosted multiple bright LBGs (abridged).Comment: 16 pages, 17 figures, Accepted for publication in ApJ, Full resolution version is available at http://zone.mtk.nao.ac.jp/~kashik/sdf/acf/sdf_lbgacf.pd

    2. Acute Kidney Injury in Intensive Care Unit

    No full text
    corecore