27 research outputs found

    Heat shock protein 90 inhibitor NVP-AUY922 exerts potent activity against adult T-cell leukemia?lymphoma cells

    Get PDF
    Adult T-cell leukemia-lymphoma (ATL), an aggressive neoplasm etiologically associated with HTLV-1, is a chemoresistant malignancy. Heat shock protein 90 (HSP90) is involved in folding and functions as a chaperone for multiple client proteins, many of which are important in tumorigenesis. In this study, we examined NVP-AUY922 (AUY922), a second generation isoxazole-based non-geldanamycin HSP90 inhibitor, and confirmed its effects on survival of ATL-related cell lines. Analysis using FACS revealed that AUY922 induced cell-cycle arrest and apoptosis; it also inhibited the growth of primary ATL cells, but not of normal PBMCs. AUY922 caused strong upregulation of HSP70, a surrogate marker of HSP90 inhibition, and a dose-dependent decrease in HSP90 client proteins associated with cell survival, proliferation, and cell cycle in the G1 phase, including phospho-Akt, Akt, IKKα, IKKβ, IKKγ, Cdk4, Cdk6, and survivin. Interestingly, AUY922 induced downregulation of the proviral integration site for Moloney murine leukemia virus (PIM) in ATL cells. The PIM family (PIM-1, -2, -3) is made up of oncogenes that encode a serine/threonine protein kinase family. As PIM kinases have multiple functions involved in cell proliferation, survival, differentiation, apoptosis, and tumorigenesis, their downregulation could play an important role in AUY922-induced death of ATL cells. In fact, SGI-1776, a pan-PIM kinase inhibitor, successfully inhibited the growth of primary ATL cells as well as ATL-related cell lines. Our findings suggest that AUY922 is an effective therapeutic agent for ATL, and PIM kinases may be a novel therapeutic target. This report first describes the effectiveness of a novel HSP90 inhibitor NVP-AUY922 to adult T-cell leukemia-lymphoma (ATL) cells

    Fig 2 -

    No full text
    NO (red) and NOx (black) concentrations and δ15N(NOx) values at the Tsukuba (a, b) and Yoyogi site (c). Error bars indicate 1σ uncertainty of δ15N(NOx) ± 1.2‰.</p

    Aerial view of the sampling sites.

    No full text
    The nitrogen isotopic composition of nitrogen oxide (NOx) is useful for estimating its sources and sinks. Several methods have been developed to convert atmospheric nitric oxide (NO) and/or nitrogen dioxide (NO2) to nitrites and/or nitrates for collection. However, the collection efficiency and blanks are poorly evaluated for many collection methods. Here, we present a method for collecting ambient NOx (NO and NO2 simultaneously) with over 90% efficiency collection of NOx and low blank (approximately 0.5 μM) using a 3 wt% hydrogen peroxide (H2O2) and 0.5 M sodium hydride (NaOH) solution. The 1σ uncertainty of the nitrogen isotopic composition was ± 1.2 ‰. The advantages of this method include its portability, simplicity, and the ability to collect the required amount of sample to analyze the nitrogen isotopic composition of ambient NOx in a short period of time. Using this method, we observed the nitrogen isotopic compositions of NOx at the Tsukuba and Yoyogi sites in Japan. The averaged δ15N(NOx) value and standard deviation (1σ) in the Yoyogi site was (−2.7 ± 1.8) ‰ and in the Tsukuba site was (−1.7 ± 0.9) ‰ during the sampling period. The main NOx source appears to be the vehicle exhaust in the two sites.</div

    Apoptosis Induced by the Histone Deacetylase Inhibitor FR901228 in Human T-Cell Leukemia Virus Type 1-Infected T-Cell Lines and Primary Adult T-Cell Leukemia Cells

    No full text
    Inhibition of histone deacetylase (HDAC) activity induces growth arrest, differentiation, and, in certain cell types, apoptosis. FR901228, FK228, or depsipeptide, is an HDAC inhibitor effective in T-cell lymphomas. Adult T-cell leukemia (ATL) is caused by human T-cell leukemia virus type 1 (HTLV-1) and remains incurable. We examined whether FR901228 is effective for treatment of ATL by assessing its ability to induce apoptosis of HTLV-1-infected T-cell lines and primary leukemic cells from ATL patients. FR901228 induced apoptosis of Tax-expressing and -unexpressing HTLV-1-infected T-cell lines and selective apoptosis of primary ATL cells, especially those of patients with acute ATL. FR901228 also efficiently reduced the DNA binding of NF-κB and AP-1 in HTLV-1-infected T-cell lines and primary ATL cells and down-regulated the expression of Bcl-x(L) and cyclin D2, regulated by NF-κB. Although the viral protein Tax is an activator of NF-κB and AP-1, FR901228-induced apoptosis was not associated with reduced expression of Tax. In vivo use of FR901228 partly inhibited the growth of tumors of HTLV-1-infected T cells transplanted subcutaneously in SCID mice. Our results indicated that FR901228 could induce apoptosis of these cells and suppress the expression of NF-κB and AP-1 and suggest that FR901228 could be therapeutically effective in ATL
    corecore