601 research outputs found

    Regulatory Role for Complement Receptors (CD21/CD35) in the Recombination Activating Gene Expression in Mouse Peripheral B Cells

    Get PDF
    A population of peripheral B cells have been shown to express recombination activating gene products, RAG-1 and RAG-2, which are considered to be involved in revising the B cell antigen receptor (BCR) in the periphery. BCR engagement has been reported to turn off RAG expression in peripheral B cells, whereas the same treatment has an opposite effect in immature B cells in the bone marrow. In contrast to receptor editing that is involved in the removal of autoreactivity in immature B cells, it has been shown that secondary V(D)J rearrangement in peripheral B cells, termed receptor revision, contributes to affinity maturation of antibodies. Here, we show that RAG-2 expression in murine splenic B cells was abrogated by the coligation of BCR with complement receptors (CD21/CD35) much more efficiently than by the engagement of BCR alone. On the other hand, the same coligation augmented proliferation of anti-CD40-stimulated B cells. Consistent with these observations, RAG-2 expression was lower in the draining lymph nodes of the quasi-monoclonal mice when they were immunized with a high-affinity antigen than with a low-affinity one. These findings suggest a crucial role for CD21/CD35 in directing the conservation or the revision of BCRs in peripheral B cells

    Survival of Terrestrial N2-O2 Atmospheres in Violent XUV Environments through Efficient Atomic Line Radiative Cooling

    Full text link
    Atmospheres play a crucial role in planetary habitability. Around M dwarfs and young Sun-like stars, planets receiving the same insolation as the present-day Earth are exposed to intense stellar X-rays and extreme-ultraviolet (XUV) radiation. This study explores the fundamental question of whether the atmosphere of present-day Earth could survive in such harsh XUV environments. Previous theoretical studies suggest that stellar XUV irradiation is sufficiently intense to remove such atmospheres completely on short timescales. In this study, we develop a new upper-atmospheric model and re-examine the thermal and hydrodynamic responses of the thermospheric structure of an Earth-like N2-O2 atmosphere, on an Earth-mass planet, to an increase in the XUV irradiation. Our model includes the effects of radiative cooling via electronic transitions of atoms and ions, known as atomic line cooling, in addition to the processes accounted for by previous models. We demonstrate that atomic line cooling dominates over the hydrodynamic effect at XUV irradiation levels greater than several times the present level of the Earth. Consequentially, the atmosphere's structure is kept almost hydrostatic, and its escape remains sluggish even at XUV irradiation levels up to a thousand times that of the Earth at present. Our estimates for the Jeans escape rates of N2-O2 atmospheres suggest that these 1 bar atmospheres survive in early active phases of Sun-like stars. Even around active late M dwarfs, N2-O2 atmospheres could escape significant thermal loss on timescales of gigayears. These results give new insights into the habitability of terrestrial exoplanets and the Earth's climate history.Comment: Published 2022 September 29 in Ap

    Atiyah-Patodi-Singer index on a lattice

    Full text link
    We propose a non-perturbative formulation of the Atiyah-Patodi-Singer(APS) index in lattice gauge theory, in which the index is given by the Ī·\eta invariant of the domain-wall Dirac operator. Our definition of the index is always an integer with a finite lattice spacing. To verify this proposal, using the eigenmode set of the free domain-wall fermion, we perturbatively show in the continuum limit that the curvature term in the APS theorem appears as the contribution from the massive bulk extended modes, while the boundary Ī·\eta invariant comes entirely from the massless edge-localized modes.Comment: 14 pages, appendices added, details of key equations added, typos corrected, to appear in PTE

    Borrowable Fractional Ownership Types for Verification

    Full text link
    Automated verification of functional correctness of imperative programs with references (a.k.a. pointers) is challenging because of reference aliasing. Ownership types have recently been applied to address this issue, but the existing approaches were limited in that they are effective only for a class of programs whose reference usage follows a certain style. To relax the limitation, we combine the approaches of ConSORT (based on fractional ownership) and RustHorn (based on borrowable ownership), two recent approaches to automated program verification based on ownership types, and propose the notion of borrowable fractional ownership types. We formalize a new type system based on the borrowable fractional ownership types and show how we can use it to automatically reduce the program verification problem for imperative programs with references to that for functional programs without references. We also show the soundness of our type system and the translation, and conduct experiments to confirm the effectiveness of our approach.Comment: An extended version of the paper to appear in Proceedings of VMCAI 202

    Cartilage Regeneration Using Pluripotent Stem Cellā€Derived Chondroprogenitors: Promise and Challenges

    Get PDF
    The cartilage of joints is longā€lasting (i.e., permanent) cartilage and is not spontaneously repaired after injury in humans. There has been considerable interest in the clinical application of stem cells to the repair of damaged cartilage; however, current cell therapies using adult chondrocytes and mesenchymal stromal cells face problems associated with the low yield of such cells. The expansion culture, needed before transplantation, leads to the formation of fibrocartilage or growth plate-like (i.e., boneā€forming) cartilage in vivo. Both types of cartilage are unsuitable for the repair of joint cartilage such as meniscus and articular cartilage. Joints are formed during embryogenesis. Therefore, we hypothesize that embryonic progenitor cells responsible for the development of joint cartilage would be the best for regenerating joint cartilage in the adult. Pluripotent stem cells (PSCs) are expected to differentiate in culture into any somatic cell types through processes that mimic embryogenesis, making human (h)PSCs a promising source of embryonic cells for regenerative medicine. However, regardless of the cell system used, the major research goals leading to clinical application to cartilage regeneration are to (1) expand chondrogenic cells (chondroprogenitors) to sufficient numbers without loss of their chondrogenic activity, and (2) direct the differentiation of such cells in vivo or in vitro toward articular or other types of chondrocytes of interest. The overall aim of the current review was to provide the basis of a strategy for meeting the goals for cartilage regeneration by the use of hPSCā€derived chondroprogenitor cells. We provide an overview on signaling mechanisms that are known to affect the expandability and chondrogenic activity of adult and embryonic chondroprogenitors, as well as their differentiation in vivo or in vitro toward a particular type of chondrocyte. We then discuss alternative types of progenitor cells that might replace or combine with the hPSCā€derived chondroprogenitors to regenerate permanent cartilage. We also include our recent achievement of successfully expanding hPSCā€derived neural crest to generate ectomesenchymal chondroprogenitors that can be maintained for a long term in culture without loss of chondrogenic activity. Finally, we provide information on the challenges that hPSC progenyā€based regenerative medicine will face, and discuss the implications for such challenges for the future use of PSC progeny to regenerate cartilage

    Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    Get PDF
    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies

    Crystallinity of In-Ga-Zn-oxide (IGZO) in CAAC-IGZO vertical FET

    Get PDF
    Oxide semiconductor field-effect transistors (OSFETs) are actively developed [1]. In particular, there are many reports on a typical oxide semiconductor, In-Ga-Zn oxide (IGZO) [2]. An OSFET is fabricated with a planar structure in many cases; however, a vertical FET (VFET) with a current path perpendicular to a substrate can be fabricated with an area overhead comparable to one trench hole, and is gathering attention [3]. The VFET structure enables OSFETs to be highly integrated, and also allows the resolution of displays to be higher. Please click Download on the upper right corner to see the full abstract

    Gosha-jinki-gan Reduces Transmitter Proteins and Sensory Receptors Associated with C Fiber Activation Induced by Acetic Acid in Rat Urinary Bladder

    Get PDF
    This is a preprint of an article published in [NEUROUROLOGY AND URODYNAMICS. 27(8):832-837 (2008)].ArticleNEUROUROLOGY AND URODYNAMICS. 27(8):832-837 (2008)journal articl
    • ā€¦
    corecore