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A population of peripheral B cells have been shown to express recombination
activating gene products, RAG-l and RAG-2, which are considered to be involved in

revising the B cell antigen receptor (BCR) in the periphery. BCR engagement has been

reported to tum off RAG expression in peripheral B cells, whereas the same treatment

has an opposite effect in immature B cells in the bone marrow. In contrast to receptor

editing that is involved in the removal of autoreactivity in immature B cells, it has been

shown that secondary V(D)J rearrangement in peripheral B cells, termed receptor

revision, contributes to affinity maturation of antibodies. Here, we show that RAG-2

expression in murine splenic B cells was abrogated by the coligation of BeR with

complement receptors (CD211CD35) much more efficiently than by the engagement of
BCR alone. On the other hand, the same coligation augmented proliferation of anti

CD40-stimulated B cells. Consistent with these observations, RAG-2 expression was

lower in the draining lymph nodes of the quasi-monoclonal mice when they were
immunized with a high-affinity antigen than with a low-affinity one. These findings

suggest a crucial role for CD211CD35 in directing the conservation or the revision of

BCRs in peripheral B cells.

1. Introduction

Recently, secondary V(D)J rearrangement (V, variable~ D, diversity; J,joining) ofIg

genes has been shown to occur in the spleen or the lymph node (LN) B cells of

immunized mice, as a consequence of increased expression of the V(D)J recombinase,

RAG-l and RAG-2 (1-7). Several human B cell clones have been identified that are
considered to have undergone secondary Y(D)J rearrangement in the periphery, probably
in GC (8,9). BCR engagement of immature B cells in the bone marrow results in the

enhancement of RAG expression, and leads to immune tolerance by editing autoreactive

BCRs, a process termed receptor editing (10). In contrast, RAG expression in peripheral
B cells may not be tolerance-driven because BCR cross-linking has been shown to turn
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off its expression (11,12). Thus, V(D)J rearrangement in peripheral B cells, recently

referred to as receptor revision, is predicted to contribute to the generation of high-affinity

antibodies (Abs) (13,14). Recently, we have demonstrated that L chain rearrangement in

murine LN B cells that occurs in the course of immune responses contributes to the

generation of high-affinity Abs (15), thus suggesting strongly that receptor revision along

with somatic hypermutation is responsible for affinity maturation by diversifying BCR

repertoire in the periphery.

In germinal centers (GCs), B cells that acquired high-affinity BCRs are positively

selected through interaction with follicular dendritic cells (FOC) that bear immune

complexes, thus leading to affinity maturation of Abs (16,17). Murine B cells and FOC

express the complement receptor type 1 (CRl; CD35) and type 2 (CR2; CD21) (18). B

cells with high-affinity BCRs that interact strongly with immune complexes retained on

FOC via their BCR and CD211CD35 have been shown to receive survival signals (19).

On the other hand, it has been reported that RAG expression was induced in murine

spleen B cells by immunization with a low-affinity antigen, but to a lesser extent with a

high-affinity antigen (11). In this context, it appears reasonable if RAG expression is

turned off in B cells that acquired high-affinity BCR, because the high-affinity BCRs

must be conserved for affinity maturation to occur. In the present report, we show that

coligation of BCR with CD21/CD35 leads to abrogation of RAG expression more

efficiently than BCR engagement alone in murine splenic B cells. Based on these

findings, role for CD211CD35 in the regulation of receptor revision is discussed.

2. Materials and methods

2.1. Mice

Male C3H/HeN mice (7-9 weeks of age) were purchased from Japan Charles River

(Kanagawa, Japan).

2.2. Abs and other reagents

Abs and other reagents used in the present work were obtained from the following

sources: F(ab'h fragment of goat anti-mouse IgM antibody (anti-IA.), Organon Teknika

Co. ( Durham, NC); anti-CD21/CD35 mAb (706, rat IgG2b) and a control rat IgG2b

mAb (A95-1), PharMingen (San Diego, CA); anti-mouse CD40 mAb (LB429) Seikagaku

Kogyo (Tokyo, Japan); avidin, and Chicken y-globulin (CGG) (St. Louis, MO). Anti

ll, 706 and an isotype-matched control Ab of 706 were biotinylated using a biotinylation

kit (American Qualex, San Clemente, CA) (1).

2.3. Cell CuIture
B cells were prepared by treating spleen cells from C3H/HeN mice with anti-Thy 1.2

mAb plus rabbit complement as described previously (20). The B cells (3 x 106/ml)

were cultured with 1 Ilg/ml anti-mouse CD40 mAb and 10 ng/ml mouse recombinant IL

4 or IL-7 (PeproTech, Princeton, NJ) for 3 days in 1 ml of RPMI-1640 medium
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containing 10% fetal bovine serum (GIBCO, Grand Island, NY), 1 x 10-5 M 2

mercaptoethanol, 100 Vlml penicillin G and 50 I-tg/ml streptomycin.

2.4. Proliferative response of B cells
B cells (6 x 105) were cultured in quadruplicate with anti-CD40 plus IL-7 as described
above in 0.2 ml of the culture medium for 48 h. Then, the cells were pulsed with 20kBq
of [3Hl-thymidine (TdR)(Amersham Pharmacia Biotech., Tokyo, Japan) for 16 h.

2.5. Assessment of RAG-2 expression by Reverse transcriptase-dependent-PCR(RT
PCR)
Total RNA was extracted from lx106 cells from cultures or isolated LNs by the RNA Zol
B method, as described (1). The extracted RNA preparations were reverse transcribed
and resultant cDNA was amplified by PCR using following sense and antisense primers
that span an intron; 5'-CACATCCACAAGCAGGAAGTACAC-3' and 5'- GGTTCA

GGGACATCTCCTACTAAG-3' for RAG-2, and 5'-CCATCACCATCTTCCAGGAG

3' and 5'-CCTGCTTCACCACCTTCCTTG-3' for GAPDH, respectively. Ig~ was

amplified using sense 5'-ATGGCCAGGCTGGCGTTGTCTC-3' and antisense 5'
GAGGCGCTGTTCATGTAGCAGTG-3' as reported by Meffre et al. (12). PCR was
performed using the polymerase, AmpliTaq Gold (Perkin Elmer, Foster City, CA) as
reported previously (6). The amplified products were electrophoresed on 7.5%

polyacrylamide gel and visualized by staining with SYBER Green I (FMC BioProducts,
Rockland, ME). The level of the amplified product of RAG-2 was estimated by Southern

blotting using a [32Pl-Iabeled probe, the Pstl-Hinfl 124 bp internal fragment of RAG-2
cDNA as described previously (6,21).

RT-PCR analysis of IL-7Ra expression was done in a similar fashion using

following primers; sense 5'-CGAGTGAAATGCCTAACTC-3'
and antisense 5'-GCGTCCAGTTGCTTTCAC-3' (21).

2.6. Imunization of mice

Mice were immunized in the footpad with an antigen emulsified in complete Freund

adjuvant as described previously (1,2). Popliteallymphnode (LN) cells were examined
for the expression of RAG-2 as described above. Serum antibody titer was assessed as
described (20).

3. Results

3.1. Downregulation of RAG-2 by coligation of CD211CD35
with BCR.

Isolated murine splenic B cells usually expressed a low but significant level of RAG
2, which varied in each mouse. Culture of the B cells with or without anti-CD40 for 3
days resulted in a complete loss of RAG-2(2l). The RAG-2 expression was, however,
maintained or more frequently augmented when B cells were stimulated with anti-CD40
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in the presence of IL-7. IL-7 alone did not enhance RAG expression as reported
previously (21). IL-4, as well as IL-7 was effective in augmenting RAG expression in

anti-CD40-activated mouse slenic B cells (1,2,7).
To investigate the regulatory role for the complement receptor (CD211CD35) in the

regulation of receptor revision, it was examined how the level of RAG-2 in anti

CD40/IL-7-stimulated B cells is modulated by engagement of BCR or by coligation of

BCR with CD211CD35. Mouse CD21 and CD35 are isoforms that are encoded by a

single gene, and generated by an alternative splicing (18). 7G6 is a mAb raised against a
C3d-binding site present on both isoforms (18). The coligation of BCR with

CD211CD35 was performed by treating B cells first with anti-I-t and 706, both of which

were biotinylated, followed by the addition of avidin. RAG-2 expression enhanced by
anti-CD40/IL-7-stimulation was partially reduced when either BCR or CD211CD35 alone

were engaged with anti-I-t (5 I-tg/ml) or 706, respectively. Further ligation of these

bound Abs with avidin did not augment the suppression (Fig. lA, lane 2-lane 6). When

anti-I-t was increased to 10 f,tg/ml, RAG-2 expression was inhibited to a greater extent,

but was not diminished totally (Data not shown). Simultaneous addition of anti-f,t and

7G6 did not show additive inhibitory effects (Fig. lA, lane 7). However, very

interestingly, coligation of BCR with CD211CD35 by avidin resulted in a stronger
suppression of RAG-2 expression than the engagement of either BCR or CD211CD35

alone (Fig. lA, lanes 4,6 and 8). These results were reconfirmed by comparing the level

of the RAG-2 transcript among lanes 2, 4 and 8 in Fig. 1A by semi-quantitative RT-PCR
that was performed with varying PCR cycles or with varying dilutions of eDNA. Similar
observations were made in the RAG expression in B cells stimulated with anti-CD40 +

IL-4 (Data not shown).
The coligation-dependent suppression of RAG-2 expression was similarly observed

when BCR were engaged weakly with a lower concentration of anti-f,t (l f,tg/ml). RAG-2

expression was markedly suppressed when BCR and CD211CD35 were coligated while
the engagement of BCR alone showed weak inhibitory effects (Fig. IC, lanes 2, 3, and
6). On the other hand, the coligation-induced suppression was abrogated when 7G6 was

replaced by an isotype-matched control mAb (Fig. IC, lanes 3 and 4), thus indicating that

the coligation of BCR with CD211CD35 but not with other molecules on B cells including
FcyRII may be responsible for the suppression.

We have reported that isolated IgD+ splenic B cells are originally IL-7R-negative, but

a part of the B cells become positive for IL-7R in response to anti-CD40/IL-7 in vitro
(21). Inhibition of the RAG-2 expression by coligation of BCR with CD211CD35 may

not be due to the suppression of IL-7R expression, because expression of IL-7Ru was

not significantly affected by the coligation (Fig. IB). It was confirmed that the y

common chain, another subunit of IL-7R, was constitutively expressed in these B cells
(Data not shown).

Collectively, RAG-2 expression in splenic B cells was more strongly downregulated
by the coligation of BCR with CD211CD35 when the engagement of BCR alone caused
only partial inhibition.
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Fig. 1. (A) Inhibition of RAO-2 expression in anti-CD40/IL-7-stimulated B cells by

coligation of BCR wilh CD2I!CD35. Anti-I.l (F(ab')2 fragment), anti-CD21!CD35 mAb

(706) and its isotype-matched control mAb were used as biotinylated forms. Murine B
cells were cullured with anti-CD40/IL-7 for 3 d. Where indicated, 5 fJ.g/ml anti-fJ., 5

IJ.g/ml 706 and 5IJ.g/mi avidin were added, alone or in combination, to the culture.

RAG-2 expression was assessed on day 3 of the culture by RT-PCR/Souther blotting.

(B) RAG~2 expression was inhibited much more strongly by coligation of BCR with
CD21/CD35 than by engagement or ~CR alone. The expression of RAG~2and IL-7Ra

was compared among lanes 2, 4 and 8 in panel A. (C) RAG-2 expression was inhibited

efficiently by coligation of BCR with CD21/CD35 even when BCR were engaged with a
lower concentration of anti-~l. B cells were stimulated with anti·CD40/IL-7 in the

presence of lor 5 fJ.g/ml anti-IJ.. 5 lJ.g!ml7G6or an isotype-matched control mAb (Co),

and 5IJ.g/mi avidin. All results are represenlatives of five experiments.
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3.2. Enhanced proliferation of splenic B cells by the coligation of CD211CD35 with

BCR.
It has been reported that coligation of CD211CD19 coreceptor with BCR enhances

signal transduction and effectively reduces the affinity threshold for BCR-mediated B cell

activation (18,22,23). Next, it was investigated how the activation status of anti
CD40/IL-7-stimulated B cells is modulated when RAG expression is suppressed. [3H]_

thymidine uptake was induced in B cells that were stimulated with anti-CD40/IL-7, and

was further was augmented when BCR of the B cells were coligated with CD211CD35

(Fig. 2). On the other hand, anti-!.! plus 7G6 had no enhancing effects when these two

Abs were not coligated with avidin. Avidin itself had no effects on the anti-CD40/IL-7
induced proliferation (Data not shown). Thus, it is considered that coligation of BCR

with CD211CD35 delivers a stimulatory signal for B cell proliferation concomitant with

an inhibitory signal for RAG expression.

None

+ anti-CD40/lL-7

I+ anti-fAl7G6

+ anti-fAIlG6
+ avidin

o 10 20 30 40

[3H]-TdR uptake (cpm x 10-3)

50

Fig. 2. Augmentation of proliferative response of anti-CD40/IL-7-stimulated B cells by

coligation of BCR with CD211CD35. B cells (6 x 105) were stimulated with 1 !.!glml

anti-CD40 and 10 ng/ml IL-7 for 48 h, followed by incubation with [3H]-TdR for 16 h.
Biotinylated anti-!.! (1 !.!g/ml) and 7G6 (5 !.!g/ml) with or without avidin (5 !.!g/ml) were

added to the culture as indicated. Data are mean cpm + SD from quadruplicate wells.
Representative data from two experiments.

3.3 A low-affinity Ag induces a higher level of RAG-2 in vivo.

In vitro experiments described above strongly suggest that mutated B cells generated

during GC reaction will conserve their BCR by inhibiting RAG expression if their BCR
and CD211CD35 are coligated strongly with Ag-C3d complexes on FDC. If this is also
the case in vivo, GC B cells with low-affinity BCR for the immunized antigen will

express a higher level of RAG-2 than the high-affinity clones. We attempted to confirm
this assumption using the QM mouse, which is an anti-4-hydroxy-3-nitrophenylacetyl
(NP) IgH-knock-in strain with the genotype VHDJHI7.2.25/JH-, K-/K-, A+/A+ (24).

We selected two NP-related ligands for anti-NP BCR in QM mice. A hapten, 3-nitro-4

hydroxy-5-iodophenylacetyl (NIP) is a high-affinity ligand that has -11 fold higher
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association constant than that of NP as reported previously (15). On the other hand, we

selected p-nitrophenylacetyl (pNP) as a low-affinity ligand, which showed morc than
-100 fold lower affinity than NIP (Fig. 3A,l5). QM mice were immunized \l.ith either

NIP- or pNP-conjugated chick:en-y-globulin (CGG) in the footpad, and the expression of

RAG-2 in popliteal LN cells was assessed by RT-PeR. RAG-2 expression was not
detected on dayO. An increased level of RAG-2 transcript was observed on day 10 in the

LN of QM mice that were immunizcd with pNP-CGG, whereas RAG-2 expression was
only marginal when immunized with NIP-CGG (Fig. 38). This may not be due to that

QM mice are unresponsivc to NIP-CGG because anti-NP IgM in the serum increased

similarly after immunization with either anti~en (Fig. 3C). Thus, these findings together

with those in in vitro experiments strongly suggest that RAG expression is regulated by
combined signals mediated by BCR and CD21/CD35.
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Fig. 3. RAG-2 expression in QM mice that were immunized with either a high-affinity or

a low-affinity Ag. (A) Structures of a high-affinity hapten (NIP) and a low-affinity
haptcn (pNP). The affinity for anti-NP IgM from QM mice was presented as a relative

association constant where the affinity of NP hapten was defined as 1.0 (association

constanl, - 2 x 106/M). (B) RAG-2 expression and (C) anti-NP IgM response in QM
mice immunized with either pNP-CGG or NIP-CGG. Male QM mice (N = 3) were

immunized with either NIP-CGG or pNP-CGG in lhe footpad. On day 0 and day 10 after

immunization, RAG-2 expression was assessed in pooled JX>pliteal LN cells by RT-PeR

with the varying reaction cycles indicated. Anti-NP IgM levels in fXX>led sera that were
collected from mice immunizcd with NIP-CGG (triangle) or pNP-CGG (circle) on day 0

(open symbol) or day 10 (closed symool) were assayed by ELISA using a plate coated
with NP-BSA and peroxidase-conjugated goat anti-mouse IgM. Data are mean ± SD

from triplicate assays. Representative data from two experimenlc;;.
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4. Discussion
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V(D)J rearrangement in peripheral B cells, termed receptor revision has been

implicated to contribute to the generation of high-affinity Abs (13,14). Our recent
experiments have shown that this is the case. We have observed that new rearrangement

of f... gene that occurs in the draining LN B cells after immunization contributes to the

generation of high-affinity IgG bearing f... chains (15). Therefore, receptor revision along

with somatic mutation may be involved in affinity maturation of Abs. Using knockin
mice whose RAG-2 expression can be monitored by a green fluorescent protein (GFP)

reporter, it has been suggested that an increase in RAG+ B cells in the spleen after

immunization is largely due to migration of immature-type B cells
(B22010wHSAhigh493+) from the bone marrow (25,26). In contrast to these

observations made in the spleen, we did not observe an increase of immature B cells in

the draining LN after immunization in the foot pad (15), consistent with the fact that only
mature B cells enter LNs (27). A majority of RAG-expressing B cells in the LN were
B220high493-GL-7+, a GC-like phenotype (Our unpublished data). Although further

studies are needed to characterize RAG-expressing B cells in the periphery, these cells are

qualitatively different from immature B cells in the bone marrow, because it has been
reported that BCR engagement results in turning off of RAG expression in the former

(11,12), but in its augmentation in the latter (9,10).
In the present report, we show that CD211C035 may playa crucial role in the

downregulation of RAG expression: The involvement of CD211CD35 is interesting in
the context of B cell selection in GCs. In GCs, centroblasts actively undergo somatic
hypermutations of V regions of Ig genes in the dark zone, and differentiate into

centrocytes with diversified BCR in the light zone (16,17). Centrocytes that interact

strongly with Ag-C3d complexes presented on FOC are positively selected to become
memory or plasma cells, whereas low-affinity or autoreactive clones may be deleted
(16,17). One hypothesis is that receptor revision must be shut off in B cells that acquired

high-affinity BCR, otherwise affinity maturation would be disturbed. This regulatory
mechanism may be operative because our experiments showed that coligation of BCR

with C021/C035 led to turning off of RAG expression. In human tonsil B cells, RAG

expression was abrogated by cross-linking BCRs with anti-K Abs (12). In 3-83 (anti-H

2Kk) transgenic mice, V(D)J recombination in splenic B cells were induced by

immunization with a low-affinity recombinant antigen, but not with a high-affinity

antigen (11). We made a similar observation using the quasi-monoclonal mouse, who

expresses a site-directed IgH gene specific for NP hapten (24). RAG expression was
much higher in the draining LN B cells when the mice were immunized with p-NP, a
low-affinity analog of NP than with NIP, a high-affinity hapten. Thus, it is suggested

that RAGs in peripheral B cells may be downregulated when the cells acquire high

affinity BCRs.
On the other hand, the same coligation delivers stimulatory signal(s) for the

proliferation of B cells (Fig. 3). When C021 complexed with CD19 is coligated with
BCR, it has been shown that signals induced through each receptor may synergize and
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provide a stronger stimulus for inducing B cell proliferation (22,23). Therefore,
CD211CD35 is considered to playa critical role in directing the conservation or the
revision of acquired BCRs, thereby supporting affinity maturation.

Acknowledgments,
This work was supported by the Grant-in-aid from The Ministry of Education, Science,
Sports and Culture of Japan to H. Ohmori. Masaki Hikida was an investigator of
PRESTO, JST.

References
1. M. Hikida, M. Mon, T. Takai, K. Tomochika, K. Hamatani,

H. Ohmori, Science 274 (1996) 2092-2094.
2. S. Han, B. Zheng, D.G. Schatz, E. Spanopolou, G. Kelsoe. 1996.

Science 274 (1996) 2094-2097.
3. M. Hikida, M. Mori, T. Kawabata, T. Takai, H. Ohmori,

1. Immunol. 158 (1997) 2509-2512.
4. S. Han, S.R. Dillon, B. Zheng, M. Shimada, M.S. Schlissel,

G. Kelsoe, Science 278 (1997) 301-305.
5. F. Papavasiliou, R. Casellas, H. Suh, x.-F. Qin, E. Besmer, R. Pelanda,

D. Nemazee, K. Rajewsky, M.C. Nussenzweig, Science 278 (1997) 298-301.
6. H. Ohmori, H., M. Hikida, Crit. Rev. Immunol. 18 (1998) 221-235.
7. M. Hikida, H. Ohmon, 1. Exp. Med. 187 (1998) 795-799.
8. P. C. Wilson, K. , Y.-1. Liu, 1. Banchereau, V. Pascual.,

1. D. Capra, 1. Exp. Med. 191 (2000) 1881-1894.
9. R. M. de Wildt, R. M. A. Hoet, W. 1. van Venrooij, 1. M. Tomlinson,

G. Winter, 1. Mol. BioI. 285 (1999) 895-901.
10. M. Hertz, D. Nemazee, Immunity 6 (1997) 429-436.
11. M. Herz,V. Kouskoff, T. Nakamura, D. Nemazee,

Nature 394 (1998) 292-295
12. Meffre, E., F. Papavasiliou, P. Cohen, O. de Bouteiller, D. Bell, H.

Karasuyama, e. Schiff, 1. Banchereau, Y.-J. Liu, and M.
Nussenzweig,l. Exp. Med. 188 (1998) 765-772.

13. G. Kelsoe, Curf. Opim. Immunol. 11 (1999) 70-75.
14. D. Nemazee, M. Weigert, 1. Exp. Med. 191 (2000) 1813-1817.
15. M. Magari, T. Sawatari, Y. Kawano, M. Cascalho, M. Wahl, N.

Kanayama, M. Hikida, H. Ohmori, Eur. J. Immunol. (2001) in press.
16. K. Rajewsky, Nature 381 (1996) 751-758.
17. G. Kelsoe, Immunity 4 (1996) 107-111.
18. Carroll, M.C, Ann. Rev. Immunol. 16 (1998)545-568.
19. M. B. Fischer, S. Goerg, L. Shen, A.P. Prodeus, C.C. Goodnow, G. Kelsoe,

M.e. Carroll, Science 280 (1998) 582-585.



60 Masaki H1KIDA et al. MEM.FAC.ENGOKA.UNI. Vo1.36. No.2

20. M. Hikida, T. Takai, H. Ohmori, J. Immunol. 156 (1996) 2730-2736.

21. M. Hikida, Y. Nakayama, Y. Yamashita, Y. Kumazawa, S.-1.

Nishikawa, H. Ohmori, J. Exp. Med. 188 (1998) 365-372.

22. P. K. A. Mongini, M.A. Vilensky, P.F. Highet, 1.K. Inman,

J. Immunol. 159 (1997) 3782-3782.

23. T. F. Tedder, M. Inaoki, S. Sato, Immunity 6 (1997) 107-118.

24. M. Cascalho, A. Ma, S. Lee, L. Masat, M. Wabl,

A quasi-monoclonal mouse. Science 272 (1996) 1649-1652.

25. R. J. Monroe, K. 1. Seidl, F. Gaertner, S. Han, F. Chen, J. Sekiguchi,

J. Wang, R. Ferrini, L. Davidson, G. Kelsoe, F. Alt,

Immunity 11 (1999) 201-212.

26. W. Yu, H. Nagaoka, M. Jankovic, Z. Misulovin, H. Suh, A. Rolink,

F. Melchers, E. Meffre, M. Nussenzweig,

Nature 400 (1999) 682-687.

27. F. Melchers, A. G. Rolink, C. Schaniel, Cell 99 (1999) 351-354




