23 research outputs found
Recommended from our members
Quantitative Mid-infrared Photoluminescence Characterization of Black Phosphorus–Arsenic Alloys
Black phosphorus (bP) is a promising material for mid-infrared (mid-IR) optoelectronic applications, exhibiting high performance light emission and detection. Alloying bP with arsenic extends its operation toward longer wavelengths from 3.7 ÎĽm (bP) to 5 ÎĽm (bP3As7), which is of great practical interest. Quantitative optical characterizations are performed to establish black phosphorus-arsenic (bPAs) alloys optoelectronic quality. Anisotropic optical constants (refractive index, extinction coefficient, and absorption coefficient) of bPAs alloys from near-infrared to mid-IR (0.2-0.9 eV) are extracted with reflection measurements, which helps optical device design. Quantitative photoluminescence (PL) of bPAs alloys with different As concentrations are measured from room temperature to 77 K. PL quantum yield measurements reveal a 2 orders of magnitude decrease in radiative efficiency with increasing As concentration. An optical cavity is designed for bP3As7, which allows for up to an order of magnitude enhancement in the quantum yield due to the Purcell effect. Our comprehensive optical characterization provides the foundation for high performance mid-IR optical device design using bPAs alloys
Recommended from our members
Meter-scale van der Waals films manufactured via one-step roll printing.
A weak van der Waals (vdW) force in layered materials enables their isolation into thin flakes through mechanical exfoliation while sustaining their intrinsic electronic and optical properties. Here, we introduce a universal roll-printing method capable of producing vdW multilayer films on wafer-to-meter scale. This process uses sequential exfoliation and transfer of layered materials from the powder sources to target substrates through a repeated rolling of a cylindrical metal drum. We achieve uniformly coated films with a library of vdW powders on various mechanically rigid and flexible substrates. The printed films are configured into different devices including light-emitting diodes and photodetectors. The presented technique offers substantial benefits in terms of cost efficiency and a low thermal budget while offering high material quality
Enhanced light emission from improved homogeneity in biaxially suspended Germanium membranes from curvature optimization
A silicon compatible light source is crucial to develop a fully monolithic silicon photonics platform. Strain engineering in suspended Germanium membranes has offered a potential route for such a light source. However, biaxial structures have suffered from poor optical properties due to unfavorable strain distributions. Using a novel geometric approach and finite element modelling (FEM) structures with improved strain homogeneity were designed and fabricated. Micro-Raman (ÎĽ-Raman) spectroscopy was used to determine central strain values. Micro-photoluminescence (ÎĽ-PL) was used to study the effects of the strain profiles on light emission; we report a PL enhancement of up to 3x by optimizing curvature at a strain value of 0.5% biaxial strain. This geometric approach offers opportunity for enhancing the light emission in Germanium towards developing a practical on chip light source
Recommended from our members
Long operating lifetime mid-infrared LEDs based on black phosphorus.
Black phosphorus (BP) is a narrow bandgap layered semiconductor promising for mid-infrared optoelectronic applications. BP-based devices have been shown to surpass state-of-the-art mid-infrared detectors and light-emitting diodes (LEDs) in terms of performance. Despite their device advantages, the materials inherent instability in the air could hinder its use in practical optoelectronic applications. Here, we investigated the impact of passivation on the device lifetime of BP LEDs, which deteriorate in a matter of seconds without using passivation. The lifetime is significantly extended with an Al2O3 passivation layer and nitrogen packaging via atomic layer deposition and ultra-violet curable resin sealing. The operational lifetime (half-life) at room temperature is extrapolated to be ~15,000 h with an initial power density of 340 mW/cm2 based on accelerated life testing. The present results indicate that efficient BP optoelectronics can be highly robust through simple and scalable packaging technologies, with important practical implications for mid-infrared applications
Inhibited nonradiative decay at all exciton densities in monolayer semiconductors.
Most optoelectronic devices operate at high photocarrier densities, where all semiconductors suffer from enhanced nonradiative recombination. Nonradiative processes proportionately reduce photoluminescence (PL) quantum yield (QY), a performance metric that directly dictates the maximum device efficiency. Although transition metal dichalcogenide (TMDC) monolayers exhibit near-unity PL QY at low exciton densities, nonradiative exciton-exciton annihilation (EEA) enhanced by van-Hove singularity (VHS) rapidly degrades their PL QY at high exciton densities and limits their utility in practical applications. Here, by applying small mechanical strain (less than 1%), we circumvented VHS resonance and markedly suppressed EEA in monolayer TMDCs, resulting in near-unity PL QY at all exciton densities despite the presence of a high native defect density. Our findings can enable light-emitting devices that retain high efficiency at all brightness levels
Recommended from our members
Low voltage AC electroluminescence in silicon MOS capacitors
Low power silicon based light source and detector are attractive for on-chip photonic circuits given their ease of process integration. However, conventional silicon light emitting diodes emit photons with energies near the band edge where the corresponding silicon photodetectors lack responsivity. On the other hand, previously reported hot carrier electroluminescent silicon devices utilizing a reverse biased diode require high operating voltages. Here, we investigate hot carrier electroluminescence in silicon metal-oxide-semiconductor capacitors operating under transient voltage conditions. During each voltage transient, large energy band bending is created at the edge of the source contact, much larger than what is achievable at a steady state. As a result, electrons and holes are injected efficiently from a single source contact into the silicon channel at the corresponding voltage transient, where they subsequently undergo impact ionization and phonon-assisted interband recombination. Notably, we show low voltage operation down to 2.8 V by using a 20 nm thick high- Îş gate dielectric. We show further voltage scaling is possible by reducing the gate dielectric thickness, thus presenting a low voltage platform for silicon optoelectronic integrated circuits
Germanium light sources for silicon photonics
Germanium (Ge) is a group-IV semiconductor promissing for both advanced electronics and photonics applications integrated on Silicon (Si) chips. The high electron mobility is favourable for the Complementary Metal-Oxide-Semiconductor (CMOS) transistors, while the quasi-indirect band gap character is useful for developing light sources for Si photonics. In this talk, we will review the current developments of Ge light sources fabricated using nano-fabrication technologies compatible with CMOS processes. In particular, we review recent progress in applying high-tensile strain to Ge to reduce the direct band gap. By making a freestanding beam using Micro-Electro-Mechanical-Systems (MEMS) processes, extremely high-tensile strain exceeding a few % can be applicable to Ge, converting indirect to direct band gap characters. Another important process is doping Ge with donor impurities to fill the indirect band gap valleys in the conduction band. Realization of carrier confinement structures and suitable optical cavities will also be discussed. Finally, we will discuss various applications of Ge light sources in potential photonics-electronics convergent systems
Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon
High electron doping of germanium (Ge) is considered to be an important process to convert Ge into an optical gain material and realize a monolithic light source integrated on a silicon chip. Spin-on doping is a method that offers the potential to achieve high doping concentrations without affecting crystalline qualities over other methods such as ion implantation and in-situ doping during material growth. However, a standard spin-on doping recipe satisfying these requirements is not yet available. In this paper we examine spin-on doping of Ge-on-insulator (GOI) wafers. Several issues were identified during the spin-on doping process and specifically the adhesion between Ge and the oxide, surface oxidation during activation, and the stress created in the layers due to annealing. In order to mitigate these problems, Ge disks were first patterned by dry etching followed by spin-on doping. Even by using this method to reduce the stress, local peeling of Ge could still be identified by optical microscope imaging. Nevertheless, most of the Ge disks remained after the removal of the glass. According to the Raman data, we could not identify broadening of the lineshape which shows a good crystalline quality, while the stress is slightly relaxed. We also determined the linear increase of the photoluminescence intensity by increasing the optical pumping power for the doped sample, which implies a direct population and recombination at the gamma valley