18 research outputs found

    A Possible Contribution of Altered Cathepsin B Expression to the Development of Skin Sclerosis and Vasculopathy in Systemic Sclerosis

    Get PDF
    Cathepsin B (CTSB) is a proteolytic enzyme potentially modulating angiogenic processes and extracellular matrix remodeling. While matrix metalloproteinases are shown to be implicated in tissue fibrosis and vasculopathy associated with systemic sclerosis (SSc), the role of cathepsins in this disease has not been well studied. The aim of this study is to evaluate the roles of CTSB in SSc. Serum pro-CTSB levels were determined by enzyme-linked immunosorbent assay in 55 SSc patients and 19 normal controls. Since the deficiency of transcription factor Fli1 in endothelial cells is potentially associated with the development of SSc vasculopathy, cutaneous CTSB expression was evaluated by immunostaining in Fli1+/− and wild type mice as well as in SSc and control subjects. The effects of Fli1 gene silencing and transforming growth factor-β (TGF-β) on CTSB expression were determined by real-time PCR in human dermal microvascular endothelial cells (HDMECs) and dermal fibroblasts, respectively. Serum pro-CTSB levels were significantly higher in limited cutaneous SSc (lcSSc) and late-stage diffuse cutaneous SSc (dcSSc) patients than in healthy controls. In dcSSc, patients with increased serum pro-CTSB levels showed a significantly higher frequency of digital ulcers than those with normal levels. CTSB expression in dermal blood vessels was increased in Fli1+/− mice compared with wild type mice and in SSc patients compared with healthy controls. Consistently, Fli1 gene silencing increased CTSB expression in HDMECs. In cultured dermal fibroblasts from early dcSSc, CTSB expression was decreased compared with normal fibroblasts and significantly reversed by TGF-β1 antisense oligonucleotide. In conclusion, up-regulation of endothelial CTSB due to Fli1 deficiency may contribute to the development of SSc vasculopathy, especially digital ulcers, while reduced expression of CTSB in lesional dermal fibroblasts is likely to be associated with skin sclerosis in early dcSSc

    Fibrous Carbons from Woody Biomass

    No full text

    Phylogenetic, population structure, and population demographic analyses reveal that Vicia sepium in Japan is native and not introduced

    No full text
    Abstract Vicia sepium (bush vetch) is a perennial legume widely distributed throughout the Eurasian continent. However, its distribution in Japan is limited to Mt. Ibuki and small parts of central and southern Hokkaido. Therefore, each Japanese V. sepium lineage has been considered to have been introduced separately from Europe. Here, we examined whether the species was introduced or not on the basis of cpDNA sequences and genome-wide SNPs from Japanese and overseas samples. Both the cpDNA haplotype network and the nuclear DNA phylogenetic tree showed that Japanese V. sepium is monophyletic. Furthermore, although the nuclear DNA phylogenetic tree also showed that each lineage is clearly monophyletic, genetic admixture of the genetic cluster dominated in the Hokkaido lineage was also detected in the Mt. Ibuki lineage. Population divergence analysis showed that the two lineages diverged during the last glacial period. The Mt. Ibuki lineage showed a sudden population decline 300–400 years ago, indicating that some anthropogenic activity might be involved, while the Hokkaido lineage showed a gradual population decline from 5000 years ago. Consequently, these two lineages show low current genetic diversity compared with overseas lineages. These results show that the Japanese V. sepium is not introduced but is native
    corecore