11 research outputs found

    Enhanced Production of EPA-Derived Anti-Inflammatory Metabolites after Oral Administration of a Novel Self-Emulsifying Highly Purified EPA Ethyl Ester Formulation (MND-2119)

    Get PDF
    Aims: MND-2119 is a novel once-daily dose self-emulsifying formulation of highly purified eicosapentaenoic acid ethyl ester (EPA-E) and is approved as an antihyperlipidemia agent in Japan. It has improved absorption and achieves higher plasma EPA concentrations at Cmax than conventional EPA-E. In the JELIS trial, concomitant use of EPA-E with statin therapy significantly reduced atherosclerotic cardiovascular disease (ASCVD) risks. As a potential mechanism of action of EPA, endogenous formation of EPA-derived anti-inflammatory metabolites is receiving greater attention. This study aims to investigate the endogenous formation of EPA-derived anti-inflammatory metabolites following single and multiple administrations of MND-2119. Methods: Healthy adult male subjects were randomly assigned to a nonintervention (control) group, MND-2119 2-g/day group, MND-2119 4-g/day group, or EPA-E 1.8-g/day group for 7 days (N=8 per group). Plasma fatty acids and EPA-derived metabolites were evaluated. Peripheral blood neutrophils were isolated, and the production of EPA-derived metabolites from in vitro stimulated neutrophils was evaluated. Results: After single and multiple administrations of MND-2119 2 g/day, there were significant increases in plasma EPA concentration, 18-hydroxyeicosapentaenoic acid (18-HEPE), and 17,18-epoxyeicosatetraenoic acid compared with those of EPA-E 1.8 g/day. They were further increased with MND-2119 4 g/day administration. In neutrophils, the EPA concentration in the MND-2119 2-g/day group was significantly higher compared with that in the EPA-E 1.8-g/day group after multiple administration, and 18-HEPE production was positively correlated with EPA concentration. No safety issues were noted. Conclusions: These results demonstrate that MND-2119 increases the plasma and cellular concentrations of EPA and EPA-derived metabolites to a greater extent than conventional EPA-E formulations

    Characterization of Lipid Profiles after Dietary Intake of Polyunsaturated Fatty Acids Using Integrated Untargeted and Targeted Lipidomics

    No full text
    Illuminating the comprehensive lipid profiles after dietary supplementation of polyunsaturated fatty acids (PUFAs) is crucial to revealing the tissue distribution of PUFAs in living organisms, as well as to providing novel insights into lipid metabolism. Here, we performed lipidomic analyses on mouse plasma and nine tissues, including the liver, kidney, brain, white adipose, heart, lung, small intestine, skeletal muscle, and spleen, with the dietary intake conditions of arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) as the ethyl ester form. We incorporated targeted and untargeted approaches for profiling oxylipins and complex lipids such as glycerol (phospho) lipids, sphingolipids, and sterols, respectively, which led to the characterization of 1026 lipid molecules from the mouse tissues. The lipidomic analysis indicated that the intake of PUFAs strongly impacted the lipid profiles of metabolic organs such as the liver and kidney, while causing less impact on the brain. Moreover, we revealed a unique lipid modulation in most tissues, where phospholipids containing linoleic acid were significantly decreased in mice on the ARA-supplemented diet, and bis(monoacylglycero)phosphate (BMP) selectively incorporated DHA over ARA and EPA. We comprehensively studied the lipid profiles after dietary intake of PUFAs, which gives insight into lipid metabolism and nutrition research on PUFA supplementation

    IL-6 Receptor Is a Possible Target against Growth of Metastasized Lung Tumor Cells in the Brain

    Get PDF
    In the animal model of brain metastasis using human lung squamous cell carcinoma-derived cells (HARA-B) inoculated into the left ventricle of the heart of nude mice, metastasized tumor cells and brain resident cells interact with each other. Among them, tumor cells and astrocytes have been reported to stimulate each other, releasing soluble factors from both sides, subsequently promoting tumor growth significantly. Among the receptors for soluble factors released from astrocytes, only IL-6 receptor (IL-6R) on tumor cells was up-regulated during the activation with astrocytes. Application of monoclonal antibody against human IL-6R (tocilizumab) to the activated HARA-B cells, the growth of HARA-B cells stimulated by the conditioned medium of HARA-B/astrocytes was significantly inhibited. Injecting tocilizumab to animal models of brain metastasis starting at three weeks of inoculation of HARA-B cells, two times a week for three weeks, significantly inhibited the size of the metastasized tumor foci. The up-regulated expression of IL-6R on metastasized lung tumor cells was also observed in the tissue from postmortem patients. These results suggest that IL-6R on metastasized lung tumor cells would be a therapeutic target to inhibit the growth of the metastasized lung tumor cells in the brain

    IL-6 Receptor Is a Possible Target against Growth of Metastasized Lung Tumor Cells in the Brain

    Get PDF
    In the animal model of brain metastasis using human lung squamous cell carcinoma-derived cells (HARA-B) inoculated into the left ventricle of the heart of nude mice, metastasized tumor cells and brain resident cells interact with each other. Among them, tumor cells and astrocytes have been reported to stimulate each other, releasing soluble factors from both sides, subsequently promoting tumor growth significantly. Among the receptors for soluble factors released from astrocytes, only IL-6 receptor (IL-6R) on tumor cells was up-regulated during the activation with astrocytes. Application of monoclonal antibody against human IL-6R (tocilizumab) to the activated HARA-B cells, the growth of HARA-B cells stimulated by the conditioned medium of HARA-B/astrocytes was significantly inhibited. Injecting tocilizumab to animal models of brain metastasis starting at three weeks of inoculation of HARA-B cells, two times a week for three weeks, significantly inhibited the size of the metastasized tumor foci. The up-regulated expression of IL-6R on metastasized lung tumor cells was also observed in the tissue from postmortem patients. These results suggest that IL-6R on metastasized lung tumor cells would be a therapeutic target to inhibit the growth of the metastasized lung tumor cells in the brain

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    No full text
    corecore