5 research outputs found

    Rheological properties of warm mixed high viscosity asphalt at high and low temperatures.

    No full text
    The rheological properties of asphalt can well reflect its road performance, but the rheological properties of warm mix high viscosity asphalt (HVA) are unclear. In order to study the effect of warm mixing agent on rheological properties of HVA, two kinds of warm mixing agent EC120 (EC) and Evotherm M1 (M1) were selected to prepare warm mix HVA. The rheological properties of warm mix HVA at high temperature (135~195°C), medium temperature (0~80°C) and low temperature (-6~18°C) were studied by Brinell rotary viscosity test, dynamic shear rheological test (including temperature scanning, frequency scanning, linear amplitude scanning) and bending beam rheological test. The test results show that both EC and M1 have good viscosity reduction effect on HVA at high temperature, and can effectively reduce the construction temperature. At medium temperature, M1 can effectively improve the fatigue resistance of HVA, and the fatigue life can be increased by about 30% when the dosage is 0.6%. EC can increase the rutting factor of HVA and improve its resistance to deformation, but it will reduce its fatigue performance. When the dosage is 4%, the fatigue life will be reduced by about 9%. At low temperature, M1 can reduce the creep stiffness S, increase the creep rate m, and improve the low temperature performance of HVA, while EC has the opposite effect, weakening the low temperature performance of HVA. The results are helpful to understand the rheological properties of warm mix HVA and promote its application

    MdFRK2-mediated sugar metabolism accelerates cellulose accumulation in apple and poplar

    No full text
    Abstract Background Cellulose is not only a common component in vascular plants, but also has great economic benefits for paper, wood, and industrial products. In addition, its biosynthesis is highly regulated by carbohydrate metabolism and allocation in plant. MdFRK2, which encodes a key fructokinase (FRK) in apple, showed especially high affinity to fructose and regulated carbohydrate metabolism. Results It was observed that overexpression of MdFRK2 in apple decreased sucrose (Suc) and fructose (Fru) with augmented FRK activity in stems, and caused the alterations of many phenotypic traits that include increased cellulose content and an increase in thickness of the phloem region. To further investigate the involved mechanisms, we generated FRK2-OE poplar lines OE#1, OE#4 and OE#9 and discovered (1) that overexpression of MdFRK2 resulted in the huge increased cellulose level by shifting the fructose 6-phosphate or glucose 6-phsophate towards UDPG formation, (2) a direct metabolic pathway for the biosynthesis of cellulose is that increased cleavage of Suc into UDP-glucose (UDPG) for cellulose synthesis via the increased sucrose synthase (SUSY) activity and transcript levels of PtrSUSY1, (3) that the increased FRK activity increases the sink strength overall so there is more carbohydrate available to fuel increased cambial activity and that resulted in more secondary phloem. These results demonstrated that MdFRK2 overexpression would significantly changes the photosynthetic carbon flux from sucrose and hexose to UDPG for increased cellulose synthesis. Conclusions The present data indicated that MdFRK2 overexpression in apple and poplar changes the photosynthetic carbon flux from sucrose and hexose to UDPG for stem cellulose synthesis. A strategy is proposed to increase cellulose production by regulating sugar metabolism as a whole
    corecore